ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

## ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ Satbayev University

# ХАБАРЛАРЫ

## ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН Satbayev University

## NEWS

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN Satbayev University

## SERIES OF GEOLOGY AND TECHNICAL SCIENCES

## 5 (443)

**SEPTEMBER – OCTOBER 2020** 

THE JOURNAL WAS FOUNDED IN 1940

PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK



NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index u the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index citation Index Dependence Citation Index и наукам для нашего сообщества.

Бас редакторы

э. ғ. д., профессор, ҚР ҰҒА академигі

### И.К. Бейсембетов

Бас редакторының орынбасары Жолтаев Г.Ж. проф., геол.-мин. ғ. докторы

Редакция алқасы:

Абаканов Т.Д. проф. (Казакстан) Абишева З.С. проф., академик (Қазақстан) Абсадыков Б.Н. проф., корр.-мүшесі (Қазақстан) Агабеков В.Е. академик (Беларусь) Алиев Т. проф., академик (Әзірбайжан) Бакиров А.Б. проф., (Қырғызстан) Буктуков Н.С. проф., академик (Қазақстан) Булат А.Ф. проф., академик (Украина) Ганиев И.Н. проф., академик (Тәжікстан) Грэвис Р.М. проф. (АКШ) Жарменов А.А. проф., академик (Казакстан) Конторович А.Э. проф., академик (Ресей) Курскеев А.К. проф., академик (Қазақстан) Курчавов А.М. проф., (Ресей) Медеу А.Р. проф., академик (Казақстан) Мухамеджанов М.А. проф., корр.-мүшесі (Қазақстан) Оздоев С.М. проф., академик (Қазақстан) Постолатий В. проф., академик (Молдова) Степанец В.Г. проф., (Германия) Хамфери Дж.Д. проф. (АҚШ) Штейнер М. проф. (Германия)

«ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы». ISSN 2518-170X (Online), ISSN 2224-5278 (Print) Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» РҚБ (Алматы қ.).

Казақстан Республикасының Ақпарат және қоғамдық даму министрлігінің Ақпарат комитетінде 29.07.2020 ж. берілген № КZ39VPY00025420 мерзімдік басылым тіркеуіне қойылу туралы куәлік.

Тақырыптық бағыты: геология және техникалық ғылымдар бойынша мақалалар жариялау.

Мерзімділігі: жылына 6 рет. Тиражы: 300 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, http://www.geolog-technical.kz/index.php/en/

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2020

Редакцияның Қазақстан, 050010, Алматы қ., Қабанбай батыр көш., 69а. мекенжайы: Қ. И. Сәтбаев атындағы геология ғылымдар институты, 334 бөлме. Тел.: 291-59-38.

Типографияның мекенжайы: «NurNaz GRACE», Алматы қ., Рысқұлов көш., 103.

\_\_\_\_\_ 3 \_\_\_\_\_

Главный редактор

д. э. н., профессор, академик НАН РК

## И. К. Бейсембетов

Заместитель главного редактора Жолтаев Г.Ж. проф., доктор геол.-мин. наук

Редакционная коллегия:

Абаканов Т.Д. проф. (Казахстан) Абишева З.С. проф., академик (Казахстан) Абсадыков Б.Н. проф., чл.-корр. (Казахстан) Агабеков В.Е. академик (Беларусь) Алиев Т. проф., академик (Азербайджан) Бакиров А.Б. проф., (Кыргызстан) Буктуков Н.С. проф., академик (Казахстан) Булат А.Ф. проф., академик (Украина) Ганиев И.Н. проф., академик (Таджикистан) Грэвис Р.М. проф. (США) Жарменов А.А. проф., академик (Казахстан) Конторович А.Э. проф., академик (Россия) Курскеев А.К. проф., академик (Казахстан) Курчавов А.М. проф., (Россия) Медеу А.Р. проф., академик (Казахстан) Мухамеджанов М.А. проф., чл.-корр. (Казахстан) Оздоев С.М. проф., академик (Казахстан) Постолатий В. проф., академик (Молдова) Степанец В.Г. проф., (Германия) Хамфери Дж.Д. проф. (США) Штейнер М. проф. (Германия)

#### «Известия НАН РК. Серия геологии и технических наук». ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан (г. Алматы).

Свидетельство о постановке на учет периодического печатного издания в Комитете информации Министерства информации и общественного развития Республики Казахстан № КZ39VPY00025420, выданное 29.07.2020 г.

Тематическая направленность: публикация статей по геологии и технических наукам.

Периодичность: 6 раз в год. Тираж: 300 экземпляров.

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел.: 272-13-19, 272-13-18, http://www.geolog-technical.kz/index.php/en/

© Национальная академия наук Республики Казахстан, 2020

Адрес редакции: Казахстан, 050010, г. Алматы, ул. Кабанбай батыра, 69а. Институт геологических наук им. К. И. Сатпаева, комната 334. Тел.: 291-59-38.

Адрес типографии: «NurNaz GRACE», г. Алматы, ул. Рыскулова, 103.

\_\_\_\_\_ 4 \_\_\_\_\_

#### Editor in chief

doctor of Economics, professor, academician of NAS RK

## I. K. Beisembetov

Deputy editor in chief

Zholtayev G.Zh. prof., dr. geol-min. sc.

#### Editorial board:

Abakanov T.D. prof. (Kazakhstan) Abisheva Z.S. prof., academician (Kazakhstan) Absadykov B.N. prof., corr. member. (Kazakhstan) Agabekov V.Ye. academician (Belarus) Alivev T. prof., academician (Azerbaijan) Bakirov A.B. prof., (Kyrgyzstan) Buktukov N.S. prof., academician (Kazakhstan) Bulat A.F. prof., academician (Ukraine) Ganiyev I.N. prof., academician (Tadjikistan) Gravis R.M. prof. (USA) Zharmenov A.A. prof., academician (Kazakhstan) Kontorovich A.Ye. prof., academician (Russia) Kurskeyev A.K. prof., academician (Kazakhstan) Kurchavov A.M. prof., (Russia) Medeu A.R. prof., academician (Kazakhstan) Muhamedzhanov M.A. prof., corr. member. (Kazakhstan) Ozdoyev S.M. prof., academician (Kazakhstan) Postolatii V. prof., academician (Moldova) Stepanets V.G. prof., (Germany) Humphery G.D. prof. (USA) Steiner M. prof. (Germany)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences.

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty). The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of Information and Social Development of the Republic of Kazakhstan **No. KZ39VPY00025420**, issued 29.07.2020.

Thematic scope: publication of papers on geology and technical sciences.

Periodicity: 6 times a year. Circulation: 300 copies.

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18, http://www.geolog-technical.kz/index.php/en/

© National Academy of Sciences of the Republic of Kazakhstan, 2020

Editorial address: Institute of Geological Sciences named after K.I. Satpayev 69a, Kabanbai batyr str., of. 334, Almaty, 050010, Kazakhstan, tel.: 291-59-38.

Address of printing house: «NurNaz GRACE», 103, Ryskulov str, Almaty.

\_\_\_\_\_ 5 \_\_\_\_

## N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF GEOLOGY AND TECHNICAL SCIENCES

ISSN 2224-5278

Volume 5, Number 443 (2020), 204 – 213

https://doi.org/10.32014/2020.2518-170X.122

UDC 662.73 IRSTI 61.53.91

## B. T. Yermagambet<sup>1</sup>, B. K. Kasenov<sup>2</sup>, N. U. Nurgaliyev<sup>1</sup>, E. E. Kuanyshbekov<sup>2</sup>, Zh. M. Kassenova<sup>1</sup>

<sup>1</sup>Institute of Coal Chemistry and Technology LLP, Nur-Sultan, Kazakhstan; <sup>2</sup>Chemical and Metallurgical Institute named after J. Abisheva, Karaganda, Kazakhstan. E-mail: coaltech@bk.ru, bake.yer@mail.ru, kasenov1946@mail.ru, nurgaliev\_nao@mail.ru, mr.ero1986@mail.ru,

## ELECTROPHYSICAL CHARACTERISTICS OF THE COAL ASH OF THE MAYKUBEN BASIN

Abstract. In this work, the temperature dependences of the electrophysical characteristics (electrical capacitance, electrical resistance, dielectric permittivity) were investigated in the range of 293-483 K for coal ash of the Maikuben basin (Kazakhstan) in its initial form, after electromagnetic (EM) and electrical discharge (ED) treatments. The temperature ranges in which the material exhibits both semiconductor properties and metallic conductivity are established. The band gap width ( $\Delta E$ ) was calculated for the studied samples. The measurement results showed that in comparison with the initial ash and ash after the EM treatment, the ash after the ED treatment has the highest values of electrical capacitance and dielectric permittivity and the lowest electrical resistance. Analysis of the research results showed that coal ash after ED treatment seems promising as a prepared raw material for its further thermochemical processing with the extraction of such valuable components as rare metals, silica, alumina, as well as a capacitive material (capacitor) and semiconductor.

**Key words:** coal ash, electrical resistance, electric capacity, dielectric permittivity, electric discharge treatment, semiconductor conductivity, metallic conductivity, band gap.

**Introduction.** When coal is burned, mineral components are converted into ash and slag, which are stored as waste products of energy production in ash and slag dumps. Despite the fact that ash dumps are classified as waste of the fifth hazard class (practically safe), they negatively affect the environment.

In Kazakhstan, the concept of transition to a "green" economy was approved. In accordance with it, all sectoral and regional development programs should be analyzed for compliance with the principles of a "green" economy. Strengthening control over compliance with environmental standards by industrial enterprises and the introduction of stringent requirements for including ash and slag waste disposal (ASW) projects into TPP projects determines the relevance of ash processing facilities.

Coal-fired power plants are suitable for cost-effective use in various industries by extracting many valuable components from ASW: aluminosilicate and magnetic microspheres [1], silica [2], alumina [3-5], rare metals [6-11] and using the remaining mass of ash as a raw material for the production of building materials [1,12,13].

Traditionally, fossil coals are attributed to semiconductors, since their electrical conductivity at constant current and room temperature is in the range of  $10^{-8}-10^{-6} \Omega^{-1} \cdot m^{-1}$ . In a sufficiently large temperature range up to 200° C, the electrical conductivity increases with increasing temperature, which is characteristic of semiconductors [14-16]. Therefore, the study of these properties of the mineral part of coal, taking into account the widespread use of ash and slag waste, is of definite scientific and practical interest.

The purpose of this work is to study the electrophysical characteristics of ash from coal combustion of the Maikuben basin (the Shoptykol deposit, Kazakhstan).

Earlier, we conducted similar studies to determine the electrical characteristics of the initial and activated shale of Kendyrlyk field [17].

**Research methodology.** Ash and slag wastes from coal combustion of the Maikuben basin (hereinafter Maikuben coal) were used as feedstock, which were kept in a muffle furnace at 815 °C for 1.5 hours to remove underburning (carbon part of ASW).

The objects of research are samples of ash of Maikuben coal (after removal of underburning) in its initial form, after processing on an electromagnetic apparatus (hereinafter EM treatment) for fine grinding of ash, and after electric discharge treatment (hereinafter ED treatment) for weakening and/or breaking chemical bonds in an aqueous solution of ash.

EM processing of ash samples was carried out on an electromagnetic apparatus EMA-1, consisting of an inductor, a working chamber and a tripod. Electric parameters of EMA-1: rated current - 8 Amps; nominal electromagnetic field strength in the center of the inductor (at 220 V) – 40-45 kA/m; active power – 0.15-0.2 kW; The power and capacity of capacitors to compensate for  $\cos\varphi$  is 400 microfarads.

Before EM treatment, the ash was mixed with magnetic granules (2-3 mm in diameter) (mass-to-mass ratio of magnetic granules -1:10; magnetic granules occupied 70-80% by volume of the working chamber) and then poured into the working chamber installed inside the inductor (in the middle). During processing (3 times for 8 minutes), the ash was thoroughly mixed and crushed due to the strong rotating and colliding actions of the magnetic granules, which is caused by the induction of the vortex electric field due to the alternating electromagnetic field. Visually, it was found that the size of the ash particles after electromagnetic treatment decreased markedly compared with the particles of the original ash.

The ED treatment of coal ash was carried out on a laboratory electrical discharge installation consisting of a power regulator, a capacitor unit, a step-up transformer (from 220 V to 30 kV), a reactor (200 ml capacity) with two electrodes. Ash (40 g) and water (80 ml) were thoroughly mixed and the resulting solution was poured into the reactor. The installation was turned on via a special remote control and the solution was treated with an electric discharge for 3 minutes and then dried to a dry state.

The elemental composition of the ash of Maikuben coal was studied by energy dispersive X-ray spectroscopy on a scanning electron scanning microscope *SEM* (*Quanta 3D 200i*) with an attachment for energy dispersive analysis (*EDAX*). The samples were fixed on a copper holder with conductive adhesive paper. Previously, a thin conducting layer of carbon was deposited on the surface of the samples in a special vacuum unit for the best passage of charges. The energy of the exciting electron beam in the analysis was 15 keV, the working distance was 15 mm.

Measurements of the Maikuben coal ash electrophysical properties were carried out according to the procedures [18,19]. The study of electrophysical characteristics (permittivity  $\varepsilon$  and electrical resistance R) was performed by measuring the electrical capacity of samples *C* on a LCR-800 serial instrument (Taiwan) at a working frequency of 1 kHz continuously in dry air in a thermostatic mode with a holding time at each fixed temperature.

Previously, plane-parallel samples were made in the form of disks with a diameter of 10 mm and a thickness of 5-6 mm with a binding additive ( $\sim 1.5$  %). Pressing was performed under a pressure of 20 kg/cm<sup>2</sup>. The resulting disks were fired in a silica oven at 400 °C for 6 hours. Then they were thoroughly double-sided grinding.

The dielectric permittivity  $\varepsilon$  was determined from the electrical capacity of the sample at known values of the sample thickness and the surface area of the electrodes. To obtain the relationship between the electrical induction *D* and the electric field strength *E*, the Sawyer-Tower circuit was used. Visual observation of *D* (*E* hysteresis loop) was performed on a C1-83 oscilloscope with a voltage divider consisting of a resistance of 6 m $\Omega$  and 700 k $\Omega$  and a reference capacitor of 0.15  $\mu$ F. The frequency of the generator is 300 Hz. In all temperature studies, the samples were placed in a furnace, the temperature was measured with a chromel-alumel thermocouple connected to a B2-34 voltmeter with an error of ±0.1 mV. The rate of temperature change is ~5 K/min. The magnitude of the dielectric permittivity at each

temperature was determined by the formula  $\mathcal{E} = \frac{C}{C_0}$ , where  $C_0 = \frac{\varepsilon_0 \cdot S}{d}$  – the capacitance of the

capacitor without the test substance (air).

The calculation of the width of the forbidden zone ( $\Delta E$ ) of the test substance was determined by the formula:  $\Delta E = (2kT_1T_2)/(0,43(T_2 - T_1)) \cdot (lgR_1 - lgR_2)$  (where k – Boltzmann constant, equal to 8.6173303·10<sup>-5</sup> eV·K<sup>-1</sup>;  $R_1$  – resistance at  $T_1$ ;  $R_2$  – resistance at  $T_2$ ).

**Results and discussion.** The results of elemental energy dispersive analysis of coal ash, shown in Table 1, show that the main macroelements of ash are acidic and amphoteric oxides of silicon, aluminum and iron, the total concentration of which is 85.06 %, which is comparable with similar data obtained in [20] for the ashes of the Maikuben coal (84.31%).

| Content, %       |           |                                |      |      |                  |        |          |                |
|------------------|-----------|--------------------------------|------|------|------------------|--------|----------|----------------|
| SiO <sub>2</sub> | $Al_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | CaO  | MgO  | TiO <sub>2</sub> | $SO_3$ | $P_2O_5$ | $K_2O + Na_2O$ |
| 50.16            | 26.63     | 8.27                           | 5.84 | 2.79 | 1.05             | 0.93   | 0.87     | 1.16           |

Table 1 – The chemical composition of the mineral part of the Maikuben coal

The results of measurements of the Maikuben coal ash electrophysical characteristics in its initial state, after the EM and ED treatments in the range of 293-483 K, are given in tables 2-4 and figures 1-3.

Т, К C, nF $R, \Omega$ 3 lgε lgR 0.02053 7208000 163 293 2.21 6.86 303 0.04537 5566000 359 2.56 6.75 313 0.18698 2827000 1480 3.17 6.45 5107 323 0.64511 1509000 3.71 6.18 1.5823 946300 12527 4.10 5.98 333 343 3.7755 567400 29890 4.48 5.75 353 8.5853 346200 67968 4.83 5.54 363 18.691 210100 147973 5.17 5.32 373 37.243 132200 294845 5.47 5.12 383 72.458 84260 573636 5.76 4.93 393 121.55 59750 962287 5.98 4.78 403 152.67 51220 1208658 6.08 4.71 413 124.82 61420 988175 5.99 4.79 423 9.708 362600 76856 4.89 5.56 1.4072 1127000 11141 4.05 6.05 433 443 0.35224 2415000 2789 3.45 6.38 453 0.07079 5306000 560 2.75 6.72 0.02075 8575000 463 164 2.22 6.93 473 0.01138 7107000 90 1.95 6.85 0.0096 6003000 483 76 1.88 6.78

Table 2 – Dependence of electrical resistance (R), electrical capacitance (C) and dielectric permittivity ( $\epsilon$ ) on temperature (coal ash in its initial form)

Table 3 – Dependence of electrical resistance (R), electrical capacitance (C) and dielectric permittivity ( $\epsilon$ ) on temperature (coal ash after EM treatment)

| Т, К | <i>C</i> , nF | <i>R</i> , Ω | 3     | lgε  | lgR  |
|------|---------------|--------------|-------|------|------|
| 293  | 0.11632       | 3981000      | 1088  | 3.04 | 6.60 |
| 303  | 0.34158       | 2130000      | 3196  | 3.50 | 6.33 |
| 313  | 1.4915        | 984100       | 13955 | 4.14 | 5.99 |
| 323  | 6.1317        | 447800       | 57370 | 4.76 | 5.65 |

=

\_

| Continuation o | f table 3     |              |        |      |      |
|----------------|---------------|--------------|--------|------|------|
| Т, К           | <i>C</i> , nF | <i>R</i> , Ω | 3      | lgɛ  | lgR  |
| 333            | 15.199        | 256000       | 142205 | 5.15 | 5.41 |
| 343            | 30.494        | 165300       | 285309 | 5.46 | 5.22 |
| 353            | 56.837        | 108900       | 531779 | 5.73 | 5.04 |
| 363            | 104.7         | 72710        | 979596 | 5.99 | 4.86 |
| 373            | 101.25        | 76420        | 947317 | 5.98 | 4.88 |
| 383            | 45.854        | 125500       | 429020 | 5.63 | 5.10 |
| 393            | 12.499        | 301400       | 116943 | 5.07 | 5.48 |
| 403            | 0.96776       | 1499000      | 9055   | 3.96 | 6.18 |
| 413            | 0.02377       | 9965000      | 222    | 2.35 | 7.00 |
| 423            | 0.00699       | 8370000      | 65     | 1.82 | 6.92 |
| 433            | 0.0061        | 4731000      | 57     | 1.76 | 6.67 |
| 443            | 0.00568       | 2586000      | 53     | 1.73 | 6.41 |
| 453            | 0.00549       | 1891000      | 51     | 1.71 | 6.28 |
| 463            | 0.00569       | 828900       | 53     | 1.73 | 5.92 |
| 473            | 0.00527       | 1498000      | 49     | 1.69 | 6.18 |
| 483            | 0.00565       | 3416000      | 53     | 1.72 | 6.53 |

Table 4 – Dependence of electrical resistance (R), electrical capacitance (C) and dielectric permittivity ( $\epsilon$ ) on temperature (coal ash after ED treatment)

| Т, К | C, nF   | <i>R</i> , Ω | 3        | lgε  | lgR  |
|------|---------|--------------|----------|------|------|
| 293  | 89.205  | 28610        | 770420   | 5.89 | 4.46 |
| 303  | 102.89  | 26190        | 888611   | 5.95 | 4.42 |
| 313  | 140.56  | 21370        | 1213948  | 6.08 | 4.33 |
| 323  | 185.14  | 17820        | 1598964  | 6.20 | 4.25 |
| 333  | 260.53  | 13610        | 2250070  | 6.35 | 4.13 |
| 343  | 362.6   | 10160        | 3131599  | 6.50 | 4.01 |
| 353  | 497.02  | 7641         | 4292519  | 6.63 | 3.88 |
| 363  | 710.51  | 5586         | 6136327  | 6.79 | 3.75 |
| 373  | 948.76  | 4405         | 8193976  | 6.91 | 3.64 |
| 383  | 1278.1  | 3418         | 11038325 | 7.04 | 3.53 |
| 393  | 1602.9  | 2815         | 13843463 | 7.14 | 3.45 |
| 403  | 1815.5  | 2590         | 15679585 | 7.20 | 3.41 |
| 413  | 1162.9  | 4156         | 10043398 | 7.00 | 3.62 |
| 423  | 536.08  | 10650        | 4629861  | 6.67 | 4.03 |
| 433  | 208.62  | 33220        | 1801749  | 6.26 | 4.52 |
| 443  | 82.004  | 87670        | 708228   | 5.85 | 4.94 |
| 453  | 23.295  | 192800       | 201188   | 5.30 | 5.29 |
| 463  | 2.232   | 808900       | 19277    | 4.29 | 5.91 |
| 473  | 0.17871 | 3219000      | 1543     | 3.19 | 6.51 |
| 483  | 0.0604  | 5514000      | 522      | 2.72 | 6.74 |

\_\_\_\_\_207 \_\_\_\_\_





Figure 2 – Temperature dependence of the dielectric permittivity (a) and electrical resistance (b) of coal ash after EM treatment



and electrical resistance (b) of coal ash after ED treatment

The results of the obtained data showed that the samples of the initial ash and ash after the EM treatment in the temperature ranges 293-403 K and 293-363 K, respectively, exhibit semiconductor properties, in the intervals 403-463 K and 363-413 K, they exhibit metallic conductivity, in the intervals 463-483 K and 413-463 K – semiconductor properties. In addition, the ash after the EM treatment in the range of 463-483 K exhibits metallic conductivity again. In contrast to these samples, the ash after the ED-treatment has only one temperature interval of 293-403 K, where it exhibits semiconductor conductivity, and the metallic conductivity exhibits in the interval of 403-483 K. Thus, the ED-treatment

=208 =

of ash leads to the expansion of the temperature range when heated, in which the metallic conductivity is manifested.

A comparative analysis of the electrophysical parameters shows that if the initial ash and ash after the EM treatment are approximately comparable, then after the ED-treatment these parameters differ significantly, mainly in the range of 293-453 K. Thus, the electrical intensity of the ash after the ED-treatment varies 89-1800 *nF*, which is substantially more than in the initial ash (0-153 *nF*) and the ash after the EM treatment ( $0 \times 105 \ nF$ ). The dielectric permittivity of the ash after the ED treatment ( $\sim 10^7$ ) is an order of magnitude greater, unlike the samples of the initial ash and ash after the EM treatment ( $\sim 10^6$ ). The ash after the ED treatment is also characterized by lower values of electrical resistance compared to other test specimens.

It should be noted that the highest values of C and  $\varepsilon$  and the lowest electrical resistance for all samples are observed at the points of transition from semiconductor to metallic conductivity (up to 403 K). At the same time, the highest values of R are reached at the points of transition from metallic to semiconductor conductivity (with the exception of ash after ED-treatment, where this transition point is the final temperature of metallic conductivity of 483 K)

The calculation of the width of band gap ( $\Delta E$ ) of the investigated substances was carried out on the basis of the following parameters (based on tables 2-4) given in table 5.

The results of the calculation of  $\Delta E$  are:

− for the initial ash 1-я зона  $\Delta E \approx 0.63$  эВ;

- for the ahs after EM treatment:  $1^{st}$  zone  $\Delta E \approx 0.83$  eV,  $2^{nd}$  zone  $\Delta E \approx 1.81$  eV;

– for the ahs after ED treatment:  $\Delta E \approx 0.56$  eV.

The calculation of  $\Delta E$  for the initial ash in a very narrow interval of 463-483 K has no practical meaning.

| Ash                | 1st interval of semiconductor conductivity |                           |                  |                  | 2nd interval of semiconductor conductivity |                           |                  |                  |
|--------------------|--------------------------------------------|---------------------------|------------------|------------------|--------------------------------------------|---------------------------|------------------|------------------|
| ASII               | <i>T</i> <sub>1</sub> , К                  | <i>T</i> <sub>2</sub> , К | $lg R_1, \Omega$ | $lg R_2, \Omega$ | <i>T</i> <sub>1</sub> , К                  | <i>T</i> <sub>2</sub> , К | $lg R_1, \Omega$ | $lg R_2, \Omega$ |
| Initial            | 293                                        | 403                       | 6.86             | 4.71             | -                                          | -                         | -                | -                |
| After EM treatment | 293                                        | 363                       | 6,60             | 4.86             | 413                                        | 463                       | 7.00             | 5.92             |
| After ED treatment | 293                                        | 403                       | 4.46             | 3.41             | _                                          | -                         | -                | _                |

Table 5 – Initial data for calculating the width of the band gap ( $\Delta E$ )

As can be seen from the calculated data, the value of  $\Delta E$  for ash after the EM treatment increases when going from the 1<sup>st</sup> to the 2<sup>nd</sup> forbidden zone. The obtained values of the band gap ( $\Delta E = 0.56$ -1.81 eV) show that virtually all the ash samples studied are narrow-gap semiconductors.

**Findings.** The results of the study showed that the high-voltage electric discharge treatment of the ashes of the Maikuben coal leads to a significant change in its electrophysical characteristics. This can be practically used in the process of preparing coal ash for the purpose of its further thermochemical processing with more complete leaching of valuable components (rare metals, silica, alumina) and/or the possibility of carrying out the process at lower values of technological parameters (temperature, concentration of reagents, exposure time of solutions etc.), compared with the original ash. Moreover, as shown by the analysis, coal ash after ED-treatment seems promising as a capacitive material (capacitor) and semiconductor.

**Work funding.** This work was carried out as part of the scientific and technical program No. IRN BR05236359 " Scientific and technological support of coal processing and production of high-conversion products of carbon chemistry", funded by the Committee of Science of the MES of the Republic of Kazakhstan.

## Б. Т. Ермағамбет<sup>1</sup>, Б. К. Касенов<sup>2</sup>, Н. У. Нургалиев<sup>1</sup>, Е. Е. Куанышбеков<sup>2</sup>, Ж. М. Касенова<sup>1</sup>

<sup>1</sup>«Көмір химиясы және технология институты» ЖШС, Нұр-Сұлтан, Қазақстан; <sup>2</sup>Ж. Әбішев атындағы химия-металлургия институты, Қарағанды, Қазақстан

### МАЙКҮБЕН БАССЕЙНІ КӨМІР КҮЛІНІҢ ЭЛЕКТРФИЗИКАЛЫҚ СИПАТТАМАЛАРЫ

Аннотация. Жұмыста Майкүбен бассейнінің (Қазақстан) көмір күліне қатысты 293-483К интервалында электрмагниттік және электроразрядтық өңдеуден кейінгі бастапқы түрдегі электрофизикалық сипаттамалардың (электр өткізгіштігі, электр кедергісі, диэлектрлік өткізгіштігі) температуралық тәуелділігі зерттелді. Көмір күлін электромагнитті өңдеу индуктордан, жұмыс камерасы мен штативтен тұратын ЭМА-1 электромагнитті аппаратында 8 минуттан 3 рет жүргізілді. ЭМА-1 аппаратының электрлік параметрлері: номиналды ток - 8 Ампер; индуктор ортасындағы электромагниттік өрістің номиналды кернеулігі (220 В кезінде) -40-45 кА/М; белсенді қуаты - 0,15-0,2 кВт; сояф компенсациясына арналған конденсаторлар қуаты мен сыйымдылығы - 400 мкФ. Электромагнитті өңдеуден бұрын күл диаметрі 2-3 мм магнитті түйіршіктермен араластырылады (ұнтақталатын материал массасының магнитті түйіршіктер массасына қатынасы 1:10) және одан кейін индуктор ортасында орнатылған жұмыс камерасына төгіледі. Көмір күлін электр зарядты өндеу қуат реттегіштен, конденсатор блогынан, жоғарылататын трансформатордан (220 В-тан 30 кВ-қа дейін), көлемі 200 мл екі электродты реактордан тұратын электр зарядтау қондырғысында жүргізілді. Күлді (40 г) және суды (80 мл) мұқият араластырып, алынған ерітіндіні реакторға құйды. Арнайы пульт арқылы қондырғыны қосып, ерітіндіні 3 минут электр разрядымен өңдеп, одан әрі құрғақ күйге дейін кептіреді. Электрофизикалық сипаттамаларды өлшеу 1кГц жұмыс жиілігі кезінде термостатты режимде құрғақ ауада үздіксіз термостатты режимде әр тіркелген температурада ұстау уақытымен үлгілердің электр қабылдағыштығын өлшеу арқылы LCR-800 (Таіwan) сериялық аспабында жүргізілді. Диэлектрлік өткізгіштігі үлгінің қалыңдығы мен электродтар беті ауданының белгілі мәнінде үлгінің электр сыйымдылығынан анықталды. D электр индукциясы мен Е электр өрісінің кернеулігі арасындағы тәуелділікті алу үшін Сойер-Тауэр схемасы қолданылды. Визуалды бақылау 6 мОм және 700 кОм кедергіден тұратын кернеу бөлгіші және 0,15 мкФ эталондық конденсаторы бар С1-83 осциллографында D (Е гистерезис ілмегі) жүргізілді. Генератордың жиілігі 300 Гц. Барлық температуралық зерттеулерде үлгілер пешке орналастырылған, температура ±0,1 мВ қателігімен В2-34 вольтметріне қосылған хром-алюмельді термобарамен өлшенген. Температураның өзгеру жылдамдығы 5 К/мин. Тыйым салынған аймақ енін есептеу ( $\Delta E$ ) температура мен электр кедергінің бастапқы және соңғы мәніне сүйене отырып жүргізілді. Алынған мәліметтер нәтижелері бастапқы күл мен күлдің үлгілері электромагниттік өңдеуден кейін 293-403К және 293-363 К температуралық аралықтарда жартылай өткізгіштік қасиеттер, өткізгіштіктің металл сипаты сәйкесінше 403-463 К және 363-413 К аралығында, ал 463-483 К және 413-463 К аралығында қайта жартылай өткізгіштік қасиеттер байқалатының көрсетті. Бұдан басқа, 463-483 К аралығында электромагниттік өңдеуден кейінгі күл қайтадан металл өткізгіштігін көрсетеді. Электр зарядты өңдеуден кейінгі күлдің осы үлгілерінен айырмашылығы тек бір 293-403 К температуралық интервал болады, онда жартылай өткізгіштіктік қасиет көрсетіледі, ал металл секілді өткізгіштікті 403-483 к интервалында көрсетеді. Бұл нәтижелерді талдау күлді электр разрядтау арқылы өңдеу металл өткізгіштік пайда болатын қыздыру барысында температуралық диапазонды кеңейтеді. Электрофизикалық параметрлердің салыстырмалы талдауы, егер электрмагниттік өңдеуден кейінгі күл мен бастапқы күлде шамамен бірдей болса, онда электроразрядты өндеуден кейін бұл параметрлер негізінен 293-453 К интервалында айтарлықтай ерекшеленеді. Сонымен, электр разрядтық өңдеуден кейінгі күлдің электрсыйымдылығы 89-1800 nF аралығында өзгереді, бұл бастапқы күлге (0-153 nF) және электромагниттік өндеуден кейінгі күлге (0-105 nF) қарағанда айтарлықтай көп. Электроразрядты өндеуден кейін күлдің диэлектрлік өткізгіштігі ( $\sim 10^7$ ) электромагниттік өңдеуден кейін бастапқы күл мен күл үлгілеріне қарағанда (~106) бірнеше есе көп. Электр зарядты өңдеуден кейінгі күл басқа зерттелетін үлгілермен салыстырғанда электр кедергісінің аз мәнімен ерекшеленеді. Электр өткізгіштіктің және диэлектрлік өткізгіштіктің үлкен мәні және барлық үлгілеріне қатысты аз электр кедергі жартылай өткізгіштен металдық өткізгіштікке өтү нүктелерінде (403 К-ге дейін) байқалады. Сонымен қатар, электр кедергісінің ең үлкен мәні металдық өткізгіштіктен жартылай өткізгіштікке өту нүктелерінде жетеді (өту нүктесі металдық өткізгіштіктің соңғы температурасы 483 К болып саналатын электр разрядтау өнімінен кейінгі күлді қоспағанда). Тыйым салынған аймақ енін есептеу нәтижесі ( $\Delta E$ ) бастапқы күл үшін  $\Delta E \approx 0,63$  эВ (1-ші аймақ), электромагнитті өңдеуден кейінгі күлге қатысты  $\Delta E \approx 0.83$  эВ (1-ші аймақ) және  $\Delta E \approx 1.81$  эВ (2-ші аймақ), электроразрядты өңдеуден кейінгі күлге қатысты  $\Delta E \approx 0.56$  эВ. Тыйым салынған аймақ енінің алынған мәні ( $\Delta E = 0.56$ -1.81 эВ) күлдің барлық зерттелетін үлгілері тар аймақты жартылай өткізгіш болып саналатынын көрсетеді. Осылайша,

жүргізілген зерттеу нәтижелері Майкүбен көмір күлінің жоғары кернеуде электр разрядты өңдеу оның электрфизикалық сипаттамаларының айтарлықтай өзгеруіне әкелетінін көрсетті. Мұны көмір күлін дайындау үдерісінде оны одан әрі қарай термохимиялық өңдеу мақсатында, құнды компоненттерді (сирек металл, кремнезем, глинозем) неғұрлым толық ерітіндіге өткізумен және/немесе бастапқы күлмен салыстырғанда технологиялық параметрлердің неғұрлым төмен мәндері (температура, реагенттер концентрациясы, ерітінділерді ұстау уақыты және т.б.) кезінде үдерісті жүргізуге пайдалануға болады. Сонымен қатар, жүргізілген талдау жұмыстары көрсеткендей, электр зарядты өңдеуден кейін көмір күлі сыйымдылық материал (конденсатор) және жартылай өткізгіш ретінде қолдану тиімді болып саналады.

**Түйін сөздер:** көмір күлі, электр кедергісі, электр сыйымдылығы, диэлектрлі өткізгіштік, электр разрядты өңдеу, жартылай өткізгіштік, металды өткізгіштік, шектеулі аймақ ені.

## Б. Т. Ермагамбет<sup>1</sup>, Б. К. Касенов<sup>2</sup>, Н. У. Нургалиев<sup>1</sup>, Е. Е. Куанышбеков<sup>2</sup>, Ж. М. Касенова<sup>1</sup>

<sup>1</sup>ТОО «Институт химии, угля и технологии», Нур-Султан, Казахстан; <sup>2</sup>Химико-металлургический институт им. Ж. Абишева, Караганда, Казахстан

### ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗОЛЫ УГЛЯ МАЙКУБЕНСКОГО БАССЕЙНА

В работе исследованы температурные зависимости электрофизических характеристик (электроемкость, электросопротивление, диэлектрическая проницаемость) в интервале 293-483 К для золы угля Майкубенского бассейна (Казахстан) в исходном виде после электромагнитного и электроразрядного воздействий. Электромагнитную обработку золы угля проводили 3 раза по 8 минут на электромагнитном аппарате ЭМА-1, состоящем из индуктора, рабочей камеры и штатива. Электрические параметры ЭМА-1: номинальный ток – 8 Ампер; номинальныя напряженность электромагнитного поля в центре индуктора (при 220 В) -40-45 кА/м; мощность активная – 0,15-0,2 кВт; мощность и емкость конденсаторов для компенсации соѕф – 400 мкФ. Перед электромагнитной обработкой золу перемешивали с магнитными гранулами диаметром 2-3 мм (соотношение массы измельчаемого материала к массе магнитных гранул – 1:10) и затем высыпали в рабочую камеру, установленную посередине внутри индуктора. Электроразрядную обработку золы угля проводили на электроразрядной установке, состоящей из регулятора мощности, блока конденсаторов, трансформатора, повышающего (от 220 В до 30 кВ) реактора объемом 200 мл с двумя электродами. Предварительно золу (40 г) и воду (80 мл) тщательно смешивали и полученный раствор сливали в реактор. Через специальный пульт включали установку и обрабатывали раствор электрическим разрядом 3 минуты и далее сушили до сухого состояния. Измерения электрофизических характеристик проводили путем измерения электроемкости образцов на серийном приборе LCR-800 (Taiwan) при рабочей частоте 1кГц непрерывно в сухом воздухе в термостатном режиме со временем выдержки при каждой фиксированной температуре. Диэлектрическую проницаемость определяли из электроемкости образца при известных значениях толщины образца и площади поверхности электродов. Для получения зависимости между электрической индукцией D и напряженностью электрического поля Е использована схема Сойера-Тауэра. Визуальное наблюдение D (Е петли гистерезиса) проводилось на осциллографе С1-83 с делителем напряжения, состоящим из сопротивления 6 мОм и 700 кОм, и эталонным конденсатором 0,15 мкФ. Частота генератора 300 Гц. Во всех температурных исследованиях образцы помещались в печь, температура измерялась хромель-алюмелевой термопарой, подключенной к вольтметру B2-34 с погрешностью ±0,1 мВ. Скорость изменения температуры ~5 К/мин. Расчет ширины запрещенной зоны ( $\Delta E$ ) проводили, исходя из начальных и конечных значений температуры и электросопротивления. Результаты полученных данных показали, что образцы исходной золы и золы после электромагнитной обработки проявляют полупроводниковые свойства соответственно в температурных интервалах 293-403К и 293-363 К, металлический характер проводимости соответственно в интервалах 403-463 К и 363-413 К, а в интервалах 463-483 К и 413-463 К – снова полупроводниковые свойства. Кроме того, зола после электромагнитной обработки в интервале 463-483 К проявляет опять металлическую проводимость в отличие от данных образцов золы после электроразрядной обработки, имеет только один температурный интервал 293-403 К, где проявляет полупроводниковую проводимость, а металлическую проводимость проявляет в интервале 403-483 К. Анализ этих результатов показал, что электроразрядная обработка золы приводит к расширению температурного диапазона при нагревании, в котором проявляется металлическая проводимость. Сравнительный анализ электрофизических параметров показывает, что если у исходной золы и золы после электромагнитной обработки примерно соспоставимы, то после электроразрядной обработки данные параметры существенно отличаются, в основном в интервале 293-453 К. Так, электроемкость золы после электроразрядной обработки изменяется в пределах 89-1800 nF, что существенно больше, чем в исходной золе (0-153 nF) и золе после электромагнитной обработки (0-105 nF). Диэлектрическая проницаемость золы после электроразрядной обработки (~ 10<sup>7</sup>) на порядок больше, в отличие от образцов исходной золы и золы после электромагнитной обработки (~10<sup>6</sup>). Зола после электроразрядной обработки также отличается меньшими значениями электросопротивления по сравнению с другими исследуемыми образцами. Наибольшие значения электроемкости и диэлектрической проницаемости и наименьшее электросопротивление для всех образцов наблюдаются в точках перехода из полупроводниковой в металлическую проводимость (до 403 К). Вместе с тем, наибольшие значения электрического сопротивления достигаются в точках перехода из металлической в полупроводниковую проводимость (за исключением золы после электроразрядной обработки, где данной точкой перехода является конечная температура металлической проводимости 483 К). Результаты расчета ширины запрещенной зоны ( $\Delta E$ ) составили для исходной золы  $\Delta E \approx 0.63$  эВ (1-я зона), для золы после электромагнитной обработки  $\Delta E \approx 0.83$  эВ (1-я зона) и  $\Delta E \approx 1,81$  эВ (2-я зона), для золы после электроразрядной обработки:  $\Delta E \approx 0,56$  эВ. Полученные значения ширины запрещенной зоны ( $\Delta E = 0,56-1,81$  эВ) показывают, что фактически все исследуемые образцы золы являются узкозонными полупроводниками. Таким образом, результаты проведенного исследования показали, что электроразрядная обработка высоким напряжением золы Майкубенского угля приводит к существенному изменению ее электрофизических характеристик. Это можно практически использовать в процессе подготовки угольной золы с целью ее дальнейшей термохимической переработки с более полным выщелачиванием ценных компонентов (редких металлов, кремнезема, глинозема) и/или возможностью проведения процесса при более низких значениях технологических параметров (температура, концентрация реагентов, время выдержки растворов и т.д.), по сравнению с исходной золой. Более того, как показал проведенный анализ, зола угля после электроразрядной обработки представляется перспективной в качестве емкостного материала (конденсатор) и полупроводника.

**Ключевые слова:** зола угля, электросопротивление, электроемкость, диэлектрическая проницаемость, электроразрядная обработка, полупроводниковая проводимость, металлическая проводимость, ширина запрещенной зоны.

#### **Information about authors:**

Yermagambet Bolat Toleukhanuly, Director of LLP "Institute of Coal Chemistry and Technology", Doctor of Chemical Science, Professor, Nur-Sultan, Kazakhstan; bake.yer@mail.ru; https://orcid.org/0000-0003-1556-9526

Kasenov Bulat Kunurovich, Head of laboratory of thermochemical processes "Chemical and Metallurgical Institute named after Zh. Abisheva" (Karaganda), Doctor of Chemical Science, Professor, Karaganda, Kazakhstan; kasenov1946@mail.ru; https://orcid.org/0000-0001-9394-0592

Nurgaliyev Nurken Uteuovich, Leading Researcher of LLP "Institute of Coal Chemistry and Technology", Candidate of Chemical Science, Nur-Sultan, Kazakhstan; nurgaliev\_nao@mail.ru; https://orcid.org/0000-0001-9171-2238

Kuanyshbekov Erbolat Ermekovich, leading engineer, master of technical sciences "Chemical and Metallurgical Institute" named. Zh. Abisheva, Karaganda, Kazakhstan; mr.ero1986@mail.ru; https://orcid.org/0000-0001-9172-9566

Kassenova Zhanar Muratbekovna, Master of Chemical Sciences and Technology, Deputy Director of LLP "Institute of Coal Chemistry and Technology", Nur-Sultan, Kazakhstan; zhanar\_k\_68@mail.ru; https://orcid.org/0000-0002-9497-7319

#### REFERENCES

[1] Adeeva L.N., Borbat V.F. (2009) Zola TJeC – perspektivnoe syr'e dlja promyshlennosti // Vestnik Omskogo universitetata, 2: 141-151 (in Russ.).

[2] Borbat V.F., Mikhailov Y.L., Adeyeva L.N., Golovanova O.A. (2000) // Chemistry and chemical technology, 1: 102 (in Russ.).

[3] Bai G., Teng W., Wang X.G., Qin J.G., Xu P., Li P.C. (2010) Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production, Trans // *Nonferrous Met. Soc.* China, 20: 169-175. DOI: 10.1016/S1003-6326(10)60034-9 (in Eng.).

[4] Liu K., Xue J.L., Zhu J. (2012) In: Light Metals, Suarez CE, John Wiley & Sons Inc., 6: 201 (in Eng.).

[5] Bai G.H., Qiao Y.H., Shen B., Chen S.L. (2011) Fuel Process. Technol., 92: 1213 (in Eng.).

=212 =

[6] Xiang-Yang C., Xin-zhe L., Qui-li Z., Hong-zhou M.A., Hin Z. (2010) Influence of NaCl on dechromization of Cu-Cr-Al alloy in H<sub>3</sub>PO<sub>4</sub> solution // *Trans Nonferr Met Soc China*, 20 (1): 123-127. DOI: 10.1016/S1003-6326(09)60108-4 (in Eng.).

[7] Arroyo F., Font O., Chimenos J.M., Pereira C.F., Querol X., Coca P. (2014) IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application *// Fuel Processing Technology*, 124: 222-227. DOI: 10.1016/j.fuproc.2014.03.004 (in Eng.).

[8] Hernandez-Exposito A., Chimenos J.M., Fernandez A.I., Font O., Querol X., Coca P., Garcia P.F. (2006) Ion flotation of germanium from fly ash aqueous leachates // *Chemical Engineering journal*, 118: 69-75. DOI: 10.1016/j.cej.2006.01.012 (in Eng.).

[9] Torralvo F.A., Fernández-pereira C. (2011) Recovery of germanium from real fly ash leachates by ion-exchange extraction // *Minerals Engineering*, 24: 35-41. DOI: 10.1016/j.mineng.2010.09.004 (in Eng.).

[10] Yermakov A.N. (1988) Analytical chemistry of rare elements [Analiticheskaja himija redkih jelementov], Collection of scientific papers, M.: Science. P.245. (Russ.).

[11] Yermagambet B.T., Nurgaliyev N.U., Abylgazina L.D., Maslov N.A., Kasenova Zh.M., Kasenov B.K. (2018) Methods for extraction of valuable components from ash-and-slag coal wastes // News of the Academy of Sciences of the Republic of Kazakhstan, 6 (432): 67-78. https://doi.org/10.32014/2018.2518-1491.28 (in Eng.).

[12] Menshov P.V., Khlupin Y.V., Nalesnik O.I., Makarovskikh A.V. (2014) Ash and Slag Waste as a Secondary Raw Material // *Procedia Chemistry*, 10: 184-191. DOI: 10.1016/j.proche.2014.10.032 (in Eng.).

[13] Shabarov A.N., Nikolayeva N.V. (2016) Complex utilization of treatment wastes from thermal power plants [Kompleksnoe ispol'zovanie othodov pererabotki teplojelektrostancij] // Journal of Mining Institute, 220: 607-610. DOI: 10.18454/PMI.2016.4.607 (in Eng.).

[14] Alekseev A.D, Konstantinova T.E, Kirillov A.K, Doroshkevich A.S, Saprykina A.V. (2010) Dielectric properties of coal in the frequency range up to 1 MHz // *Physical and Technical Problems of Mining Production* [Fiziko-tehnicheskie problemy gornogo proizvodstva], 13: 22-31 (in Russ.).

[15] Vasilenko T.A, Kirillov A.K, Doroshkevich A.S, Saprykina A.B. (2013) Impedance spectroscopy study of the response of anthracite to thermal and electromagnetic effects // *Physico-technical problems of mining production* [Fiziko-tehnicheskie problemy gornogo proizvodstva], 16: 7-17 (in Russ.).

[16] Podder J, Majumder S. (2001) A study on thermal and electrical characterization of Barapukuria coal of northwestern Bangladesh // *Thermochimica Acta*, 372, 113-118. DOI: 10.1016/s0040-6031(01)00442-7.

[17] Yermagambet B.T, Kasenov B.K, Nurgaliyev N.U, Nabiev M.A, Kasenova Zh.M, Kazankapova M.K, Zikirina A.M.
[2018] Electrophysical Properties and Heat Capacity of Shale from the Kendyrlyk Deposit // Solid Fuel Chem., 52 (2): 138-141.
DOI: 10.3103/S0361521918020039 (in Eng.).

[18] Okazaki K (2008) Technology of ceramic dielectrics. Energy, M., 256.

[19] Zhumadilov E.K, Davrenbekov S.Zh, Mustafin E.S, Kasenov B.K, Edilbayeva S.T. (2004) Study of the electrophysical properties of chromite GdSrCr<sub>2</sub>O<sub>5,5</sub> // *The Bulletin the National Academy of Sciences of the Republic of Kazakhstan* [Vestnik Nacional'noj Akademii nauk Respubliki Kazahstan], 5: 114-118 (in Russ.).

[20] Tauanov Z., Abylgazina L., Spitas C., Itskos G., Inglezakis V. (2017) Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants. International Conference on Materials Sciences and Nanomaterials. IOP Conf. Series: Materials Science and Engineering, 230: 43-49. DOI: 10.1088/1757-899X/230/1/012046 (in Eng.).

## Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see <u>http://www.elsevier.com/publishingethics</u> and <u>http://www.elsevier.com/journal-authors/ethics</u>.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis electronic preprint, or as an see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyrightholder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайте:

## www:nauka-nanrk.kz

## ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

http://www.geolog-technical.kz/index.php/en/

Редакторы М. С. Ахметова, Д. С. Аленов, А. Ахметова Верстка Д. А. Абдрахимовой

Подписано в печать 14.10.2020. Формат 70х881/8. Бумага офсетная. Печать – ризограф. 14 п.л. Тираж 300. Заказ 5.