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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical 
sciences scientific journal has been accepted for indexing in the Emerging Sources Citation 
Index, a new edition of Web of Science. Content in this index is under consideration by 
Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social 
Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth 
of content Web of Science offers to researchers, authors, publishers, and institutions sets it 
apart from other research databases. The inclusion of News of NAS RK. Series of geology 
and technical sciences in the Emerging Sources Citation Index demonstrates our dedication 
to providing the most relevant and influential content of geology and engineering sciences 
to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология 
және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің 
жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын 
хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды 
одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the 
Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science 
зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен 
сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы 
Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және 
беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды 
білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и 
технических наук» был принят для индексирования в Emerging Sources Citation Index, 
обновленной версии Web of Science. Содержание в этом индексировании находится 
в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия 
журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и 
the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину 
контента для исследователей, авторов, издателей и учреждений. Включение 
Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation 
Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному 
контенту по геологии и техническим наукам для нашего сообщества.
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БАС РЕДАКТОР
ЖҰРЫНОВ Мұрат Жұрынұлы, химия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, РҚБ 

«Қазақстан Республикасы Ұлттық Ғылым академиясының» президенті, АҚ «Д.В. Сокольский атындағы 
отын, катализ және электрохимия институтының» бас директоры (Алматы, Қазақстан), https://www.scopus.
com/authid/detail.uri?authorId=6602177960, https://www.webofscience.com/wos/author/record/2017489

БАС РЕДАКТОРДЫҢ ОРЫНБАСАРЫ: 
АБСАДЫҚОВ Бақыт Нәрікбайұлы, техника ғылымдарының докторы, профессор, ҚР ҰҒА 

академигі, Қ.И. Сәтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті (Алматы, Қазақстан), 
https://www.scopus.com/authid/detail.uri?authorId=6504694468, https://www.webofscience.com/wos/author/
record/2411827

РЕДАКЦИЯ АЛҚАСЫ:
ӘБСӘМЕТОВ Мәлiс Құдысұлы (бас редактордың орынбасары), геология-минералогия 

ғылымдарының докторы, профессор, ҚР ҰҒА академигі, У.М. Ахмедсафин атындағы Гидрогеология 
және геоэкология институтының директоры, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.
uri?authorId=56955769200, https://www.webofscience.com/wos/author/record/1937883

ЖОЛТАЕВ Герой Жолтайұлы, геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА 
құрметті академигі, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=57112610200, 
https://www.webofscience.com/wos/author/record/1939201

СНОУ Дэниел, PhD, қауымдастырылған профессор, Небраска университетінің Су ғылымдары 
зертханасының директоры, (Небраска штаты, АҚШ), https://www.scopus.com/authid/detail.
uri?authorId=7103259215, https://www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, Жер туралы ғылымдар бөлімінің петрология және пайдалы қазбалар 
кен орындары саласындағы зерттеулерінің жетекшісі, Табиғи тарих мұражайы, (Лондон, Ұлыбритания), 
https://www.scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/
record/1048681

ПАНФИЛОВ Михаил Борисович, техника ғылымдарының докторы, Нанси университетінің 
профессоры, (Нанси, Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.
webofscience.com/wos/author/record/1230499

ШЕН Пин, PhD, Қытай геологиялық қоғамының Тау-кен геологиясы комитеті директорының 
орынбасары, Американдық экономикалық геологтар қауымдастығының мүшесі, (Бейжің, Қытай), 
https://www.scopus.com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/
record/1753209

ФИШЕР Аксель, қауымдастырылған профессор, PhD, Дрезден техникалық университеті, (Дрезден, 
Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/
wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, химия ғылымдарының докторы, Беларусь ҰҒА академигі, Жаңа 
материалдар химиясы институтының құрметті директоры, (Минск, Беларусь), https://www.scopus.com/
authid/detail.uri?authorId=7004624845

КАТАЛИН Стефан, PhD, қауымдастырылған профессор, Техникалық университеті (Дрезден, 
Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/
wos/author/record/1309251

САҒЫНТАЕВ Жанай, PhD, қауымдастырылған профессор, Назарбаев университеті (Астана, 
Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=57204467637, https://www.webofscience.com/
wos/author/record/907886

ФРАТТИНИ Паоло, PhD, қауымдастырылған профессор, Бикокк Милан университеті, (Милан, 
Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400 

НҰРПЕЙІСОВА Маржан Байсанқызы – Техника ғылымдарының докторы, Қ.И. Сәтбаев атындағы 
Қазақ ұлттық зерттеу техникалық университетінің профессоры, (Aлматы, Қазақстан), https://www.scopus.com/
authid/detail.uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

Ратов Боранбай Товбасарович, техника ғылымдарының докторы, профессор, «Геофизика және 
сейсмология» кафедрасының меңгерушісі, Қ.И. Сәтбаев атындағы Қазақ ұлттық зерттеу техникалық 
университеті, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=55927684100, https://
www.webofscience.com/wos/author/record/1993614

РОННИ Берндтссон, Лунд университетінің Таяу Шығысты перспективалы зерттеу орталығының 
профессоры, Лунд университетінің толық курсты профессоры, (Швеция), https://www.scopus.com/authid/
detail.uri?authorId=7005388716, https://www.webofscience.com/wos/author/record/1324908

МИРЛАС Владимир, Ариэль университетінің Химиялық инженерия факультеті және Шығыс ғылыми-
зерттеу орталығы, (Израиль), https://www.scopus.com/authid/detail.uri?authorId=8610969300, https://www.
webofscience.com/wos/author/record/53680261



«Известия РОО «НАН РК». Серия геологии и технических наук».
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ГЛАВНЫЙ РЕДАКТОР
ЖУРИНОВ Мурат Журинович, доктор химических наук, профессор, академик НАН РК, президент 

РОО Национальной академии наук Республики Казахстан, генеральный директор АО «Институт топлива, 
катализа и электрохимии им. Д.В. Сокольского» (Алматы, Казахстан), https://www.scopus.com/authid/detail.
uri?authorId=6602177960, https://www.webofscience.com/wos/author/record/2017489

ЗАМЕСТИТЕЛЬ ГЛАВНОГО РЕДАКТОРА 
АБСАДЫКОВ Бахыт Нарикбаевич, доктор технических наук, профессор, академик НАН РК, 

Казахский национальный исследовательский технический университет им. К.И. Сатпаева (Алматы, 
Казахстан), https://www.scopus.com/authid/detail.uri?authorId=6504694468, https://www.webofscience.com/
wos/author/record/2411827

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:
АБСАМЕТОВ Малис Кудысович, (заместитель главного редактора), доктор геолого-

минералогических наук, профессор, академик НАН РК, директор Института гидрогеологии и геоэкологии 
им. У.М. Ахмедсафина (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=56955769200, 
https://www.webofscience.com/wos/author/record/1937883

ЖОЛТАЕВ Герой Жолтаевич, доктор геологоминералогических наук, профессор, почетный академик 
НАН РК (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=57112610200, https://www.
webofscience.com/wos/author/record/1939201

СНОУ Дэниел, PhD, ассоциированный профессор, директор Лаборатории водных наук Университета 
Небраски (штат Небраска, США), https://www.scopus.com/authid/detail.uri?authorId=7103259215, https://
www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, руководитель исследований в области петрологии и месторождений 
полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия), https://www.
scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/record/1048681

ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, 
Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/
wos/author/record/1230499

ШЕН Пин, PhD, заместитель директора Комитета по горной геологии Китайского геологического 
общества, член Американской ассоциации экономических геологов (Пекин, Китай), https://www.scopus.
com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

ФИШЕР Аксель, ассоциированный профессор, PhD, технический университет Дрезден (Дрезден, 
Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/
wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный 
директор Института химии новых материалов (Минск, Беларусь), https://www.scopus.com/authid/detail.
uri?authorId=7004624845

КАТАЛИН Стефан, PhD, ассоциированный профессор, Технический университет (Дрезден, 
Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/
wos/author/record/1309251

САГИНТАЕВ Жанай, PhD, ассоциированный профессор, Назарбаев университет (Астана, Казахстан), 
https://www.scopus.com/authid/detail.uri?authorId=57204467637 , https://www.webofscience.com/wos/author/
record/907886

ФРАТТИНИ Паоло, PhD, ассоциированный профессор, Миланский университет Бикокк (Милан, 
Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400 НУРПЕИСОВА Маржан 
Байсановна – доктор технических наук, профессор Казахского Национального исследовательского 
технического университета им. К.И. Сатпаева, (Aлматы, Казахстан), https://www.scopus.com/authid/detail.
uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

РАТОВ Боранбай Товбасарович, доктор технических наук, профессор, заведующий кафедрой 
«Геофизика и сейсмология», Казахский Национальный исследовательский технический университет им. 
К.И. Сатпаева, (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=55927684100, https://
www.webofscience.com/wos/author/record/1993614

РОННИ Берндтссон, Профессор Центра перспективных ближневосточных исследований Лундского 
университета, профессор (полный курс) Лундского университета, (Швеция), https://www.scopus.com/
authid/detail.uri?authorId=7005388716 , https://www.webofscience.com/wos/author/record/1324908

МИРЛАС Владимир, Факультет химической инженерии и Восточный научно-исследовательский 
центр, Университет Ариэля, (Израиль), https://www.scopus.com/authid/detail.uri?authorId=8610969300, 
https://www.webofscience.com/wos/author/record/53680261
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Abstract. Modern industrial sectors, including mining, geological exploration, 
and mechanical engineering, play a key role in the economic development of 
the Republic of Kazakhstan. Their efficient operation depends on the quality of 
manufacturing and restoration of technological equipment components. However, 
the production and repair of such components require significant costs, and their 
restoration in remote areas is complicated by the lack of specialized machinery, 
leading to additional expenses and downtime.

To address these challenges, this study proposes the concept of a mobile 3D 
printer with an integrated mechanical processing system. The primary focus is on 
developing a manipulator that ensures precise positioning of the welding nozzle 
and spindle, which perform key functions in the printing process and subsequent 
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mechanical processing. The manipulator must operate within a workspace range of 
X ±250 mm, Y ±250 mm, Z ±200 mm. Its selection is justified based on criteria such 
as structural rigidity and positioning speed. Direct and inverse kinematics problems 
were solved to determine the working area and dimensions of the manipulator. 
Homogeneous Denavit–Hartenberg transformation matrices were constructed, and 
Jacobian matrices were obtained to establish the relationship between input and 
output velocities and accelerations.

The proposed concept has significant potential for the rapid production and 
restoration of technological equipment components in remote areas. Implementing 
this technology will reduce production costs, minimize equipment downtime, and 
enhance the technological independence of industrial enterprises.

Keywords: geological exploration equipment, metal 3D printer, WAAM, 
manipulator, inverse kinematics, direct kinematics, workspace.
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Аннотация. Қазіргі заманғы өнеркәсіп салалары, соның ішінде тау-кен 
өндіру, геологиялық барлау және машина жасау, Қазақстан Республикасының 
экономикалық дамуында маңызды рөл атқарады. Олардың тиімді жұмыс 
істеуі технологиялық жабдықтың бөлшектерін сапалы өндіру мен қалпына 
келтіруге байланысты. Алайда, мұндай бөлшектерді өндіру және жөндеу 
айтарлықтай шығындарды талап етеді, ал оларды шалғай аудандарда қалпына 
келтіру арнайы станоктардың болмауынан қиынға соғады, бұл қосымша 
шығындар мен жабдықтың тоқтап қалуына әкеледі.

Осы мәселелерді шешу үшін бұл жұмыста механикалық өңдеу жүйесі 
біріктірілген мобильді 3D-принтердің тұжырымдамасы ұсынылады. Негізгі 
назар дәнекерлеу саптамасы мен шпиндельді дәл орналастыруды қамтамасыз 
ететін манипуляторды әзірлеуге бағытталған. Олар басып шығару және 
кейінгі механикалық өңдеу процестерінде негізгі функцияларды орындайды. 
Манипулятордың жұмыс кеңістігі X ±250 мм, Y ±250 мм, Z ±200 мм 
шегінде болуы тиіс. Оның таңдалуы құрылымдық қаттылық және орналасу 
жылдамдығы сияқты критерийлерге негізделген. Жұмыста манипулятордың 
жұмыс аймағы мен өлшемдерін анықтау үшін тура және кері кинематика 
есептері шешілді. Денавит–Хартенбергтің біртекті түрлендіру матрицалары 
құрылып, кіріс және шығыс жылдамдықтары мен үдеулерінің өзара 
байланысын анықтайтын Якоби матрицалары алынды.

Ұсынылған тұжырымдама шалғай аудандарда технологиялық жабдық 
бөлшектерін жедел өндіру және қалпына келтіру үшін үлкен әлеуетке ие. Бұл 
технологияны енгізу өндіріс шығындарын азайтуға, жабдықтың бос тұрып 
қалуын барынша азайтуға және өнеркәсіптік кәсіпорындардың технологиялық 
тәуелсіздігін арттыруға мүмкіндік береді.

Түйін сөздер: геологиялық барлау жабдықтары, металл 3D принтері, 
WAAM, манипулятор, кері кинематика, тура кинематика, жұмыс аймағы.
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Аннотация. Современные промышленные отрасли, включая 
горнодобывающую, геологоразведочную и машиностроительную, играют 
ключевую роль в экономическом развитии Республики Казахстан. Их 
эффективное функционирование зависит от качества изготовления и 
восстановления деталей технологического оборудования. Однако производство 
и ремонт таких деталей требуют значительных затрат, а их восстановление в 
удаленных районах осложняется отсутствием специализированных станков, 
что приводит к дополнительным расходам и простоям. 

Для решение вышеуказанных проблем в данной работе предлагается 
концепция мобильного 3D-принтера с интегрированной системой 
механической обработки. Основное внимание уделено разработке 
манипулятора, обеспечивающего точное позиционирование сварочного 
сопла и шпинделя, выполняющих ключевые функции в процессе печати и 
последующей механической обработки. Манипулятор должен обеспечивать 
перемещение в рабочем пространстве с диапазонами X ±250 мм, Y ±250 
мм, Z ±200 мм. Его выбор обоснован такими критериями, как жёсткость 
конструкции и скорость позиционирования. Решены задачи прямой и обратной 
кинематики для определения рабочей зоны и размеров манипулятора. 
Построены однородные матрицы преобразования Денавита–Хартенберга, а 
также получены матрицы Якоби, устанавливающие связь между входными и 
выходными скоростями и ускорениями.

Предложенная концепция обладает значительным потенциалом для опе
ративного производства и восстановления деталей технологического обору
дования в удалённых районах. Внедрение данной технологии позволит снизить 
производственные издержки, минимизировать время простоя оборудования и 
повысить технологическую независимость промышленных предприятий.

Ключевые слова: геологоразведочное оборудование, металлический 
3D-принтер, WAAM, манипулятор, обратная кинематика, прямая кинематика, 
рабочее пространство.

Introduction. The mining and geological exploration industries face challenges 
related to equipment reliability and maintenance due to harsh operating conditions. 
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Special difficulties arise in the manufacturing and repair of complex-shaped parts, 
such as drill bits, rods, and pump components. Additionally, mining shearers 
frequently fail, especially milling drums and cutting tools, which experience 
intense wear (Florea, et al., 2022). The cutter sleeves of continuous miners suffer 
from cracks, wear, and plastic deformation, often due to unsuitable materials 
and manufacturing processes (Lindsay, et al., 2023). Large components, such 
as gear wheels in bucket-wheel excavators, can break prematurely, requiring 
costly replacements or complex repairs (Arsić, et al., 2021). In remote geological 
exploration, mining, and mechanical engineering sites, the lack of specialized 
equipment for restoration and repair necessitates transporting parts to factories or 
purchasing new ones, increasing costs and downtime. One alternative solution to 
this problem is mobile manufacturing. However, traditional metalworking machines 
are often too bulky and heavy for mobile use in field conditions. In recent decades, 
there has been rapid development in three-dimensional printing technology, which 
has become an integral part of modern manufacturing and scientific research. This 
evolution has led to the creation of numerous innovative methods and devices 
aimed at expanding the capabilities of 3D printing. One of the most promising 
technologies is metal additive manufacturing, which enables the production of 
medium and large metallic components for various industries, including mining, 
geological exploration, and mechanical engineering (Shah, et al., 2023).

Metal 3D printer is a metalworking technology that is an alternative to traditional 
processes such as casting and subtractive machining. This technology is widely 
used in engineering due to its many advantages such as rapid prototyping, product 
weight reduction, and geometric freedom (Capasso, et al., 2024). There are 2 types 
of metal printing based on additive technology: powder 3D printing (Renderos, et 
al., 2016) and Wire Arc Additive Manufacturing (hereafter referred to as WAAM) 
based 3D printing (Çam, et al., 2022). Due to the fact that metal wire manufacturing 
technology is relatively simpler than metal powder manufacturing, products 
manufactured using WAAM technology are cheaper (Knezović, et al., 2019) and 
can reduce production time by 40-60% depending on the size of parts compared to 
traditional manufacturing methods (Ribeiro, et al., 1998). However, this technology 
has disadvantages, in particular, compared to metal powder printing systems, it is 
less accurate, difficult to create complex geometries and requires more time for 
post-printing machining (Srivastava, et al., 2023), as well as its stationarity.

In industrial 3D printers (Glashier, et al., 2023; Ferreira, 2024), the WAAM 
technology does not include post-mechanical processing, requiring additional 
machines or extra functionalities for existing 3D printers. Another drawback of 
industrial 3D printers is their stationary nature, which results in additional time and 
cost for transporting parts.  

To address the aforementioned issues, this paper proposes a new concept of a 
multifunctional mobile metal 3D printer for industrial applications, equipped with a 
post-printing mechanical processing system. The key component of the printer is a 



185

ISSN 2224-5278                                                                                                           2.2025

manipulator, which determines its efficiency, as well as its ability to print complex 
parts and perform post-processing of fitting surfaces. As part of the study, an 
analysis of the manipulator’s mobility was conducted, including direct and inverse 
kinematics problems, velocity and acceleration analysis, and the determination of 
the working area based on inverse kinematics. Additionally, the dimensions of the 
delta robot’s links, featuring three translational degrees of freedom, were selected, 
and a 3D model was designed.

Materials and methods. o ensures mobility and mechanical processing; a new 
concept has been proposed (Fig. 1). Conceptually, the manipulator (3), as the main 
working unit of the metal 3D printer based on WAAM technology, provides three 
primary translational degrees of freedom, while the worktable (1) has two rotational 
degrees of freedom. Therefore, the total number of degrees of freedom for the entire 
printer is five (3+2) (Fig. 1). This degree of freedom allows for the creation of 
numerous complex-shaped products without the need for support structures. At the 
same time, it enhances the product’s resistance to mechanical loads, enabling the 
use of advanced printing strategies. In metal 3D printing, quality is influenced not 
only by the melting process but also by the selection of the appropriate 3D printing 
strategy, which is one of the key factors (Xin, et al., 2021).

4 
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the worktable (1) has two rotational degrees of freedom. Therefore, the total number of degrees of 
freedom for the entire printer is five (3+2) (Fig. 1). This degree of freedom allows for the creation 
of numerous complex-shaped products without the need for support structures. At the same time, it 
enhances the product's resistance to mechanical loads, enabling the use of advanced printing 
strategies. In metal 3D printing, quality is influenced not only by the melting process but also by the 
selection of the appropriate 3D printing strategy, which is one of the key factors (Xin, et al., 2021). 
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According to the proposed concept, the workflow sequence is as follows: the 
part is printed on the 3D printer on the worktable (1), with a flat metal base plate 
and a removable platform secured underneath the printed part. The printing head 
(2) is mounted on the movable platform (3) of the manipulator (4). Metal wire 
will be used as the material for 3D printing, and a standard welding machine (5), 
adapted for 3D printing, will be used to melt this wire. The 3D printing process is 
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carried out on five axes, eliminating poor interlayer bonding, which is common 
in traditional 3D printing. After completing the 3D printing process, the printing 
head is automatically replaced with a spindle, enabling mechanical processing such 
as turning, milling, drilling, and grinding with the appropriate cutting tools. The 
finished product is then cut from the platform using a mechanized saw and directed 
for installation on machinery or equipment.

For the multifunctional mobile metal 3D printer to operate efficiently, the 
manipulator, used as the main working unit, must meet several key requirements. 
First, it must ensure high precision. Second, it must be sufficiently rigid to 
withstand heavy loads during mechanical processing. At the same time, it should 
be lightweight and compact for easy transportation.

In metal 3D printing using the WAAM technology, serial manipulators are 
commonly used as the primary motion system. For example, one of the leading 
companies in WAAM technology, the Dutch company MX3D and WAAM3D, 
as well as the study by Horgar et al. (2018), utilized an articulated manipulator. 
Meanwhile, Parc3D and the study by M. Dinovitzer et al. (2019) employed a gantry-
type manipulator. Although serial manipulators provide a large working area and 
high maneuverability, studies by Neugebauer et al. (2019) and Uchiyama et al. 
(2019) indicate that their load capacity is limited due to their cantilevered design. 
Therefore, these serial manipulators do not align with our concept. Additionally, 
studies by Baigunchekov et al. (2020), Merlet et al. (2000), and Mustafa et al. 
(2024) highlight that, compared to serial manipulators with open kinematic chains, 
parallel manipulators with closed kinematic loops offer higher load capacity, greater 
structural rigidity, improved positioning accuracy, reduced moving mass, and better 
dynamic performance.

Therefore, a delta robot which has a parallel structure is considered as the main 
working body of a multifunctional mobile metal 3D printer. The positioning accuracy 
of the delta robot is about 0.1 mm (Bentaleb, et al., 2011). In the next section, the 
forward and inverse kinematics problems of the delta robot are solved, its working 
area is calculated, and the structural dimensions, velocities and accelerations of the 
center of the mobile platform are determined.

Delta robot Clavel is a parallel manipulator (PM) consisting of three identical 
parallel kinematic chains 4 
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Each leg of this PM has 5 DOFs, therefore, the DOF of the moving platform can be determined as 
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, which connect the moving 
platform 5 and the fixed base 1 (Fig. 2). Each kinematic chain includes active 
revolute kinematic pairs 3 Aj attached to the fixed base 1, which are driven by 
electric motors 2. The moving platform was connected by parallelograms, with 
their centers forming universal kinematic pairs Cj and Dj.
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where Fi is the number of DOF of the kinematic chains (legs) of the PM, and n 
is the number of legs of the PM.

It is known that these three degrees of freedom are translational, and the 
positioning accuracy of such a robot is approximately one micron. 

Inverse kinematics. The closure equations describing the vector loops of the legs 
in the PM have been derived
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Expanding the brackets, we subtract the second equation of system (11) from the first one, and 
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Expanding the brackets, we subtract the second equation of system (11) from the first one, and 
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11 1 2,2 2m X X     12 1 2,2 2m Y Y    2 2 2 2 2 2
13 1 1 1 2 2 2 ,m X Y Z X Y Z      21 2 3,2 2m X X   
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From (13), taking into account (14), we obtain the values of Xp and Yp. 
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Velocity and acceleration analysis. To determine the relationship between the 
velocities of the active kinematic pairs and the moving platform, we take the time 
derivative of equations (7)

9 
 

From (13), taking into account (14), we obtain the values of PX  and PY .  
 
Velocity and acceleration analysis. To determine the relationship between the velocities of the 

active kinematic pairs and the moving platform, we take the time derivative of equations (7) 
 

 1 1 1 1  (  -  ) + m  n 0 1,2,3,i i i i i i i i i il c m c l s s = ,i =              (15) 
 
where 2 2  2   2 ,i i x i yl L c V L s V         2  2 ,i zm L V    

   2   2   +i i P xn r c X V       2   2   2 , 1,2,3.i P y P zr s Y V Z V i        
Equations (15) are rewritten in the following matrix form 
 

 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

0 0
0 0
0 0

c c c Vx d
c c c Vy d
c c c Vz d





      
              

      
      

    (16) 

 
where 1 2 1  2   2   2 ,i Р i i ic X r c L c c            2 2 1  2   2   2 ,i Р i i ic Y r s L c s            

3 2 1  2   2 ,i Р ic Z L s      2 1 2 1 2 1 2 1  2   2   2   2 ,i P i i Р i i Р i id L Z c L r s L X c s L Y s s                        
1,2,3.i   

From equations (16), the velocity of the moving platform can be determined for given angular 
velocities of the active revolute kinematic pairs. To determine the accelerations of the center of the 
moving platform for given angular accelerations of the active links, we take the time derivative of 
equations (15) and express them in matrix form   

 

 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

0 0
0 0 ,
0 0

x

y

z

k k k W f
k k k W f
k k k fW





      
              

            

   (17) 

 
where 1 2 1  2   2   2 ,i P i i ik X r c L c c            2 2 1  2   2   2 ,i P i i ik Y r s L c s            

3 2 1  2 (   ),i P ik Z L s     2 1 2 1 2 1 2 1  2    2   2   2 ,i P i i i P i P i if L X c s L r s L Z c L Y s s                        
   2 1 1 1 2 1 2 1 1  2   Z   2   2   i z i P i i i i x i P i ib L V c s L r c L c V s X c                             

 2 1 1 , 2   i y i P i iL s V s Y c           1 2 1  2   2 ,i x i i ia V L c s          

2 2 1  2   2i y i i ia V L s s         , 3 2 1  2   2 , 1,2,3.i z i ia V L c i               
From equations (17), the acceleration of the moving platform can be determined for given angular 

accelerations of the active revolute kinematic pairs.  
 

Results. Numerical results for the inverse kinematics problem. The following constant 
parameters were given: 180 , ar mm 100 , br mm ,a br r r  1 700 , L mm 2 400 , L mm  

0 0 0
1 2 30 , 120 , 240 .         

Additionally, the coordinates of the center of the moving platform: 300 , PX mm  
300 , PY mm  750 . PZ mm  Figure 5 shows the position of the PM for specific numerical values. 

A program was developed that automatically adjusts the equation solutions based on the signs of the 
coordinates of the center of the moving platform and determines the position of the PM.  
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300 , PY mm  750 . PZ mm  Figure 5 shows the position of the PM for specific numerical values. 
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From equations (17), the acceleration of the moving platform can be determined for given angular 

accelerations of the active revolute kinematic pairs.  
 

Results. Numerical results for the inverse kinematics problem. The following constant 
parameters were given: 180 , ar mm 100 , br mm ,a br r r  1 700 , L mm 2 400 , L mm  
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Additionally, the coordinates of the center of the moving platform: 300 , PX mm  
300 , PY mm  750 . PZ mm  Figure 5 shows the position of the PM for specific numerical values. 

A program was developed that automatically adjusts the equation solutions based on the signs of the 
coordinates of the center of the moving platform and determines the position of the PM.  
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Figure 4 Solution of the inverse kinematics problem

The coordinates of the center of the moving platform were set within a 
parallelepiped, where the values of  Xp, Yp  vary from -300 mm to +300 mm in 50 
mm increments, and Zp  varies from 400 mm to 750 mm in 50 mm increments. 
The workspace of the PM (Fig. 6) was obtained based on the inverse kinematics 
problem. From Figure 5, it can be seen that the center of the moving platform can 
reach all internal points of the given parallelepiped, meaning that the dimensions of 
the PM were selected to achieve a specific workspace. 
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Figure 6 Velocity and acceleration analysis 
  

Figure 6 shows the velocity and acceleration vectors of the center of the moving platform for 
given values of the center position, angular velocities, and accelerations of the input revolute active 
kinematic pairs.  

Discussion. The numerical analysis of the inverse kinematics problem allowed us to determine 
the workspace of the PM and verify its kinematic feasibility for the given range of movements. The 
calculations revealed that the center of the moving platform can reach all points within the specified 
workspace, confirming the correctness of the chosen structural dimensions. This is supported by the 
results presented in Figure 6, which illustrates the manipulator's workspace. 

To verify the obtained data, the direct kinematics problem was solved. During the analysis, the 
rotation angles of the active kinematic pairs were set based on the values obtained from the inverse 
kinematics solution. The calculations showed that the coordinates of the moving platform's center 
matched the previously computed values, confirming the accuracy of the developed model. 

Additionally, an analysis of the velocities and accelerations of the moving platform's center was 
conducted. Figure 6 presents the velocity and acceleration vectors calculated for various platform 
positions and given angular parameters of the active kinematic pairs. The obtained results 
demonstrate that the developed kinematic model adequately describes the system's dynamic 
behavior and accounts for the manipulator's inertial characteristics. 

Thus, numerical experiments confirmed the operability of the proposed kinematic model of the 
PM, the correctness of its geometric parameter selection, and the feasibility of efficiently 
controlling its movement within the specified workspace. Further research may focus on accounting 
for external force influences and calculating dynamic loads to improve positioning accuracy. 

 
 Conclusion.   
The results of this study on the development of a multifunctional mobile 3D printer based on 

WAAM technology with an integrated mechanical processing system can be summarized as 
follows: 

The proposed concept of a mobile 3D printer aims to address the challenge of manufacturing 
and repairing complex-shaped parts directly at geological exploration, mining, and mechanical 
engineering sites. 

 



194

N E W S  of  the  National  Academy  of  Sciences  of  the  Republic  of   Kazakhstan

11 
 

 
1 2 3 1 2

3

  1,   1,   1,   2,   2,
  2,   0,   0,   750.Р Р РX Y Z

    


    
   

 

 
1 2 3 1 2

3

  1,   1,   1,   1,   2,
  3,   0,   0,   750.Р Р РX Y Z

    


    
   

 

 
1 2 3 1 2

3

  1,   2,   3,   1,   1,
  1,   0,   0,   750.Р Р РX Y Z

    


    
   

 

 
1 2 3 1 2

2

  1,   1.5,   2,   4,   1,
  3,   300,   300,   750.Р Р РX Y Z

    


    
   

 
 

Figure 6 Velocity and acceleration analysis 
  

Figure 6 shows the velocity and acceleration vectors of the center of the moving platform for 
given values of the center position, angular velocities, and accelerations of the input revolute active 
kinematic pairs.  

Discussion. The numerical analysis of the inverse kinematics problem allowed us to determine 
the workspace of the PM and verify its kinematic feasibility for the given range of movements. The 
calculations revealed that the center of the moving platform can reach all points within the specified 
workspace, confirming the correctness of the chosen structural dimensions. This is supported by the 
results presented in Figure 6, which illustrates the manipulator's workspace. 

To verify the obtained data, the direct kinematics problem was solved. During the analysis, the 
rotation angles of the active kinematic pairs were set based on the values obtained from the inverse 
kinematics solution. The calculations showed that the coordinates of the moving platform's center 
matched the previously computed values, confirming the accuracy of the developed model. 

Additionally, an analysis of the velocities and accelerations of the moving platform's center was 
conducted. Figure 6 presents the velocity and acceleration vectors calculated for various platform 
positions and given angular parameters of the active kinematic pairs. The obtained results 
demonstrate that the developed kinematic model adequately describes the system's dynamic 
behavior and accounts for the manipulator's inertial characteristics. 

Thus, numerical experiments confirmed the operability of the proposed kinematic model of the 
PM, the correctness of its geometric parameter selection, and the feasibility of efficiently 
controlling its movement within the specified workspace. Further research may focus on accounting 
for external force influences and calculating dynamic loads to improve positioning accuracy. 

 
 Conclusion.   
The results of this study on the development of a multifunctional mobile 3D printer based on 

WAAM technology with an integrated mechanical processing system can be summarized as 
follows: 

The proposed concept of a mobile 3D printer aims to address the challenge of manufacturing 
and repairing complex-shaped parts directly at geological exploration, mining, and mechanical 
engineering sites. 

Figure 6 Velocity and acceleration analysis
	
Figure 6 shows the velocity and acceleration vectors of the center of the moving 

platform for given values of the center position, angular velocities, and accelerations 
of the input revolute active kinematic pairs. 

Discussion. The numerical analysis of the inverse kinematics problem allowed 
us to determine the workspace of the PM and verify its kinematic feasibility for 
the given range of movements. The calculations revealed that the center of the 
moving platform can reach all points within the specified workspace, confirming 
the correctness of the chosen structural dimensions. This is supported by the results 
presented in Figure 6, which illustrates the manipulator’s workspace.
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vectors calculated for various platform positions and given angular parameters of 
the active kinematic pairs. The obtained results demonstrate that the developed 
kinematic model adequately describes the system’s dynamic behavior and accounts 
for the manipulator’s inertial characteristics.

Thus, numerical experiments confirmed the operability of the proposed 
kinematic model of the PM, the correctness of its geometric parameter selection, 
and the feasibility of efficiently controlling its movement within the specified 
workspace. Further research may focus on accounting for external force influences 
and calculating dynamic loads to improve positioning accuracy.

 Conclusion.  
The results of this study on the development of a multifunctional mobile 3D 

printer based on WAAM technology with an integrated mechanical processing 
system can be summarized as follows:

The proposed concept of a mobile 3D printer aims to address the challenge 
of manufacturing and repairing complex-shaped parts directly at geological 
exploration, mining, and mechanical engineering sites.
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A kinematic analysis of the manipulator was conducted to ensure precise 
positioning of the printing head and subsequent mechanical processing. Based on 
an analysis of various kinematic structures, a delta robot with three translational 
degrees of freedom was selected as the printer’s working unit.

Forward and inverse kinematics problems were solved, and the working area 
of the manipulator was determined using inverse kinematics: X ±250 mm, Y ±250 
mm, Z ±200 mm. Homogeneous Denavit–Hartenberg transformation matrices 
were constructed, and Jacobian matrices were derived to establish the relationship 
between input and output velocities and accelerations. Additionally, the dimensions 
of the manipulator’s links were defined.

The proposed design of the mobile 3D printer with post-processing surpasses 
subtractive methods by reducing repair time by 40–60%, lowering costs, and 
eliminating the need for part transportation, thereby increasing equipment reliability.

This study contributes to the further development of additive manufacturing 
in industrial applications, addressing additional challenges related to improving 
printing accuracy and automating post-processing.
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