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N E W S  of  the  National  Academy  of  Sciences  of  the  Republic  of   Kazakhstan

NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences 
scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new 
edition of Web of Science. Content in this index is under consideration by Clarivate Analytics 
to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and 
the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to 
researchers, authors, publishers, and institutions sets it apart from other research  databases.  
The  inclusion  of News  of  NAS  RK.  Series  of  geology  and  technical sciences in the 
Emerging Sources Citation Index demonstrates our dedication to providing the most relevant 
and influential content of geology and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған 
нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. 
Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science 
Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities 
Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, 
авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР 
ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation 
Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық 
ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических 
наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии 
Web of Science. Содержание в этом индексировании находится в стадии рассмотрения 
компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation 
Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web 
of Science предлагает качество   и  глубину   контента   для   исследователей,  авторов,  
издателей  и  учреждений. Включение Известия НАН РК. Серия геологии и технических 
наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее 
актуальному и влиятельному контенту по геологии и техническим наукам для нашего 
сообщества.
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ғылымдарының докторы, профессор, ҚР ҰҒА академигі, «У.М. Ахмедсафина атындағы 
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D.V. Zuev2, Ye.G. Adilkhanov2
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MODERN METHODS OF GYROSCOPIC ORIENTATION 
OF MINE WORKINGS

Abstract. Gyroscopic orientation of mine workings is a method that allows 
using a gyrocompass to determine the direction of the geographic meridian at any 
point in a tunnel, tunneling, etc. The gyroscopic orientation of mine workings 
began at the beginning of the last century.

The practical application of high-tech devices, such as digital gyrocompasses, 
has greatly increased the accuracy of the main bases of mine surveying networks 
and made it possible to orient workings at great depths. Gyroscopic orientation 
of mine workings is indispensable for the development of inclined shafts.

Gyroscopic orientation of mine workings is carried out during connecting 
shooting during underground mining. The purpose of this orientation is to draw 
up geodetic plans, both on the surface of the earth and underground working 
horizons in a single coordinate system.

Key words: Gyroscopic orientation, gyrocompass, workings, “polar” 
disturbing moment of a synchronous hysteresis gyro motor, drift of a gyroscope 
from spherical support, high-tech devices.
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Д.В. Зуев2, Е.Г. Адильханов2
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ТАУ-КЕН ЖҰМЫСТАРЫНЫҢ ГИРОСКОПИЯЛЫҚ 
БАҒЫТТАРЫНЫҢ ҚАЗІРГІ ӘДІСТЕРІ

Аннотация. Кен қазбаларының гироскопиялық бағдарлануы – туннель 
салу және т.б. гирокомпастың көмегімен туннельдің кез келген нүктесіндегі 
географиялық меридианның бағытын анықтауға мүмкіндік беретін әдіс. Кен 
қазбаларын гироскопиялық бағдарлау өткен ғасырдың басында басталды.

Цифрлық гирокомпастар сияқты жоғары технологиялық құрылғыларды 
іс жүзінде қолдану маркшейдерлік желілердің күшті нүктелерінің дәлдігін 
айтарлықтай арттырды және үлкен тереңдіктегі жұмыстарды бағдарлауға 
мүмкіндік берді. Көлбеу оқпандарды игеру үшін кен қазбаларының 
гироскопиялық бағыттылығы өте қажет.

Кен қазбаларының гироскопиялық бағдарлануы жерасты тау-кен жұмыс
тарын жүргізу кезінде байланыстырушы қызмет атқарады. Бұл бағдардың 
мақсаты жер бетінде де, жер асты горизонттарында да бір координаттар жүйе
сінде жұмыс істеудің геодезиялық жоспарларын жасау болып табылады.

Түйін сөздер: Гироскопиялық бағдар, гирокомпас, әзірлемелер, синхрон
ды гистерезис гиромоторының «полярлық» алаңдату сәті, сфералық тірегі 
бар гироскоптың дрейфі, жоғары технологиялық құрылғылар.
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СОВРЕМЕННЫЕ МЕТОДЫ ГИРОСКОПИЧЕСКОГО 
ОРИЕНТИРОВАНИЯ ГОРНЫХ ВЫРАБОТОК

Аннотация. Гироскопическое ориентирование горных выработок – 
метод, позволяющий проводить при помощи гирокомпаса определение 
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направления географического меридиана в любой точке тоннеля, проходки 
и т. д. Гироскопическое ориентирование горных выработок началось еще в 
начале прошлого столетия.

Практическое применение высокотехнологичных приборов, какими 
являются цифровые гирокомпасы, в значительной степени повысило 
точность опорных пунктов маркшейдерских сетей, позволило ориентировать 
выработки на больших глубинах. Гироскопическое ориентирование горных 
выработок незаменимо при разработке наклонных стволов.

Гироскопическое ориентирование горных выработок проводится при 
соединительной съемке во время подземных разработок. Цель такого 
ориентирования – составить геодезические планы, как поверхности земли, 
так и подземных горизонтов выработки в единой координатной системе.

Ключевые слова: гироскопическое ориентирование, гирокомпас, раз-
работки, «полярный» возмущающий момент синхронного гистерезисного 
гиродвигателя, уход гироскопа со сферической опорой, высокотехнологич-
ные приборы.

Introduction. The first gyrocompasses were patented in Germany and the 
USA in 1911. Their work is based on the principle of a spinning top: the axis 
of a rotating top at high speeds necessarily takes a vertical position. Today, a 
gyroscope is the most complicated digital device that allows the gyroscopic 
orientation of mine workings with the highest accuracy (Szafarczyk A. et al, 
2017:77).

Also, such a connecting survey should ensure the orientation of the reference 
surveying network concerning the geodetic network on the ground; to ensure 
the alignment of the mine surveying network by accurately establishing the 
coordinates of a series of points in the coordinate system acting on the surface. 
The transfer of elevations from the ground to mine workings is another purpose 
of connecting surveying (Grobler H., 2015).

Before starting the gyroscopic orientation of mine workings, it is necessary to 
determine the “local” correction of the gyrocompass itself. With this definition, 
the gyroscopic azimuth of the side with a certain directional angle is specified. 
When the gyroscopic orientation of mine workings is performed constantly at 
new points, the corrections are calculated twice before it descends into the mine, 
and once after the work is completed (PMG Katowice, 2007).

When performing subsequent work, after each stage, a control determination 
is done. The correction is calculated from the last 4 measurements as arithmetic 
mean.

In this connection, the gyroscopic orientation of mine workings, the main task 
of which is the transfer of coordinates from the earth’s surface to underground 
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horizons, is the work of the highest level of responsibility, which is performed 
during tunneling of:

- various tunnels;
- subway lines;
- mines (Zhen S, et al, 2013:85).
Advantages
The possibility to perform the assigned tasks regardless of the time of day, 

the depth of tunneling, at an arbitrary distance from the shaft - quite reasonably 
brings the gyroscopic orientation to the leading positions among other methods. 
At the same time, there is no need to stop all work at the site, which is necessary 
when using other survey methods.

Let us study the influence of the harmonic components of the moments on the 
drift of a gyroscope from a central spherical support. The disturbing moment of 
the electric motor contains several harmonic components (Tulegulov A.D. et al, 
2021:149). In particular, imperfections in a synchronous motor cause angular 
vibrations of the rotor. The frequency of these perturbations is a multiple of the 
frequency of rotation of the stator magnetic field relative to the rotor (Vesela M. 
et al, 2016:98), the phases are determined by the phase of the rotating magnetic 
field of the motor.

Disturbing equatorial moments due to geometric defects of the supports have 
a spectrum of frequencies that are multiples of the rotor speed.

The main sources of forced “equatorial” oscillations of the rotor axis of 
gyroscopes are the dynamic unbalance of the rotor, “internal” disturbing 
moments, determined by technological imperfections in the manufacture of 
the rotor support units (Sammarco J., 2012:1127). In the case of a dynamically 
unbalanced gyroscope, the axis of dynamic symmetry of the rotor passes through 
the center of the suspension, but does not coincide with the axis of its rotation due 
to imperfections in the manufacturing technology of the rotor and assembling 
the elements of the gyroengine (Golovanov V.A., 2004).

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the 
magnetic field of the engine, which allow us to analyze the motion of the rotor 
and identify the reasons for the drift (Hendrik C. I., 2016:108).

In the equation of motion, we will take into account only the “polar” disturbing 
moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide 
range of frequencies, disturbing moments are neglected.

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. 
When analyzing the kinematics of the gyroscope, we use the following coordinate 
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systems: 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 

 
Oξ1ξ2ξ3

Γ1
Oξ1

→ Oη1η2η3
Γ2

Oη2
→ Oy1y2y3

Γ3
Oy3

→ Oz1z2z3
ε

Oz1
→ Ox1x2x3,    (1) 

 
i.e. as a product of matrices Sε321

∗ = Sε
∗S3

∗S2
∗S1

∗. 
 
Here Γ1, Γ2, ε - small angles of rotation; S1

∗, S2
∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 - right orthogonal trihedron associated with inertial space; 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 

 
Oξ1ξ2ξ3

Γ1
Oξ1

→ Oη1η2η3
Γ2

Oη2
→ Oy1y2y3

Γ3
Oy3

→ Oz1z2z3
ε

Oz1
→ Ox1x2x3,    (1) 

 
i.e. as a product of matrices Sε321

∗ = Sε
∗S3

∗S2
∗S1

∗. 
 
Here Γ1, Γ2, ε - small angles of rotation; S1

∗, S2
∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 
- intermediate right orthogonal trihedrons; 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 
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Oη2
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Γ3
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ε
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i.e. as a product of matrices Sε321
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Here Γ1, Γ2, ε - small angles of rotation; S1

∗, S2
∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 - right orthogonal trihedrons 
associated with the rotor. The axis 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 

 
Oξ1ξ2ξ3

Γ1
Oξ1

→ Oη1η2η3
Γ2

Oη2
→ Oy1y2y3

Γ3
Oy3

→ Oz1z2z3
ε

Oz1
→ Ox1x2x3,    (1) 

 
i.e. as a product of matrices Sε321

∗ = Sε
∗S3

∗S2
∗S1

∗. 
 
Here Γ1, Γ2, ε - small angles of rotation; S1

∗, S2
∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 at zero readings of the sensors of the 
angular position of the rotor coincides with the axis of rotation of the magnetic 
field of the stator of the synchronous motor. Let us assume that the trihedron 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 
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Γ1
Oξ1

→ Oη1η2η3
Γ2

Oη2
→ Oy1y2y3

Γ3
Oy3

→ Oz1z2z3
ε

Oz1
→ Ox1x2x3,    (1) 

 
i.e. as a product of matrices Sε321

∗ = Sε
∗S3

∗S2
∗S1

∗. 
 
Here Γ1, Γ2, ε - small angles of rotation; S1

∗, S2
∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 coincides with the main central axes of inertia of the rotor and let 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
disturbing moment of the synchronous hysteresis gyro motor. Due to technological 
imperfections in the manufacture of bearing supports, which contain a wide range 
of frequencies, disturbing moments are neglected. 

Let us consider the case when the gyroscope rotor is dynamically unbalanced. 
Assume that all axes of the right orthogonal trihedron intersect at one point. When 
analyzing the kinematics of the gyroscope, we use the following coordinate systems: 
Oξ - right orthogonal trihedron associated with inertial space; Oy, Oη - intermediate 
right orthogonal trihedrons; Oz, Ox - right orthogonal trihedrons associated with the 
rotor. The axis Oz3 at zero readings of the sensors of the angular position of the rotor 
coincides with the axis of rotation of the magnetic field of the stator of the 
synchronous motor. Let us assume that the trihedron Ox coincides with the main 
central axes of inertia of the rotor and letOx3 be the axis of dynamic symmetry of 
the rotor. Except for imperfections. All coordinate systems are the same (Anderson, 
E. G., 2010). 

Trihedrons Oη, Oy, Oz, Ox are obtained from a trihedron Oξ by successive 
turns by anglesΓ1, Γ2, Γ3, ε around axesOξ1, Oη2, Oy3 and Oz1, respectively: 
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i.e. as a product of matrices Sε321
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Here Γ1, Γ2, ε - small angles of rotation; S1
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∗, S3

∗, Sε
∗ - coordinate system 

rotation matrices. The value of the angle ε determined between the axes of proper 
rotation and dynamic symmetry in modern gyroscopic instruments is small. 

Denote through Ω1x, Ω2x, Ω3x projections of the absolute angular velocity of 
the rotor on the axis of the trihedron Ox. 

Using sequences (1), we can determine the projections of the absolute angular 
velocity of the rotor on the axes of the coordinate system Ox1x2x3. Let us assume 
that the angular velocity of the rotor Γ3̇ differs from the constant value of the angular 
velocity of rotation of the stator magnetic field Ω0 by a small value θ̇,. θ - is called 
the synchronization angle, i.e. this is the angle of rotation of the rotor relative to the 
magnetic field of the stator. 

 
be the axis of dynamic symmetry of the rotor. Except for imperfections. All 
coordinate systems are the same (Anderson, E. G., 2010).

Trihedrons 

determined by technological imperfections in the manufacture of the rotor support 
units (Sammarco J., 2012:1127). In the case of a dynamically unbalanced gyroscope, 
the axis of dynamic symmetry of the rotor passes through the center of the 
suspension, but does not coincide with the axis of its rotation due to imperfections 
in the manufacturing technology of the rotor and assembling the elements of the 
gyroengine (Golovanov V.A., 2004). 

Materials and methods. Let us compose the equations of motion of a ball 
gyroscope, caused by the influence of harmonic disturbing moments of the magnetic 
field of the engine, which allow us to analyze the motion of the rotor and identify 
the reasons for the drift (Hendrik C. I., 2016:108). 

In the equation of motion, we will take into account only the “polar” 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ

∗ , M2ξ
∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ

∗𝐢𝐢 + Mz
∗𝐣𝐣 + Mx

∗𝐞𝐞,                 (4) 
 
and we believe that M1ξ

∗ , M2ξ
∗  «M3ξ

∗ ; M1z
∗ , M2z

∗  «M3z
∗ ; M1x

∗ , M2x
∗  «M3x

∗ . 
 
In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 
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Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 
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inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ
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∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 
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and we believe that M1ξ
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ

∗ , M2ξ
∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ
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∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 
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We introduce additional notation: M1ξ
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H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ
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In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 
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We introduce additional notation: M1ξ
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∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ

∗𝐢𝐢 + Mz
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∗ , M2ξ
∗  «M3ξ

∗ ; M1z
∗ , M2z

∗  «M3z
∗ ; M1x

∗ , M2x
∗  «M3x

∗ . 
 
In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
 

 - projections of the angular momentum vector 
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Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ

∗ , M2ξ
∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
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second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ

∗ , M2ξ
∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ

∗𝐢𝐢 + Mz
∗𝐣𝐣 + Mx

∗𝐞𝐞,                 (4) 
 
and we believe that M1ξ

∗ , M2ξ
∗  «M3ξ

∗ ; M1z
∗ , M2z

∗  «M3z
∗ ; M1x

∗ , M2x
∗  «M3x

∗ . 
 
In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
 

 - intensity amplitude and phase 
of the 1st harmonic component; I – permanent magnetization vector; V - volume 
of the active part of the rotor.

Projections of the angular momentum vector 

Let us write the absolute angular velocity of the rotor in projections on the 
axis of the trihedron x, associated with the axes of dynamic symmetry of the rotor  

[
Ω1x
Ω2x
Ω3x

] = Sε
∗S3

∗S2
∗S1

∗ [
Ω1ξ
Ω2ξ
Ω3ξ

] + Sε
∗S3

∗S2
∗ [

Γ̇1
0
0

] + Sε
∗S3

∗ [
0
Γ̇2
0

] + Sε
∗ [

0
0
Γ̇3

].       (2) 

Here Ω1ξ, Ω2ξ, Ω3ξ - base angular velocity projections, Γ̇3 = Ωс + θ̇ - rotor 
angular velocity. 

In the expansions of the nonlinear angular velocity of the rotor in projections 
onto the axis of the trihedron x, we keep the linear terms and nonlinear terms of the 
second order of smallness in Γ1, Γ̇1, Γ2, Γ̇2, ε and θ, θ̇. We assume that the gyroscope 
is mounted on a fixed base. Then the angular velocity will take the form 

 
Ω1x = Γ̇1 cos Γ3 + Γ̇2 sin Γ3,   Ω2x = Γ̇3ε + Γ̇2 cos Γ3 − Γ̇1sin Γ3, 

Ω3x = (Γ̇1sin Γ3 − Γ̇2 cos Γ3)ε + Γ̇1Γ2 + Γ̇3.          (3) 
 
When compiling the equations of motion, we use the coordinate systems and 

kinematic relations given above. 
We introduce additional notation: M1ξ

∗ , M2ξ
∗ , M3ξ

∗  - projections of the moment 
applied to the rotor on the axis of the trihedron ξ; A, B, C - main central moments of 
inertia of the rotor directed along the equatorial and polar axes; H1x, H2x, H3x и 
H1ξ, H2ξ, H3ξ - projections of the angular momentum vector 𝐇𝐇∗ on the axis of 
trihedrons x and ξ, respectively. 

Since the main cause of the gyroscope error is the “polar” disturbing moment, 
this moment 𝐌𝐌 can be represented as a vector sum of the components directed along 
the axes of the right orthogonal trihedrons Oξ, Oz, Ox: 

 
𝐌𝐌∗ = Mξ

∗𝐢𝐢 + Mz
∗𝐣𝐣 + Mx

∗𝐞𝐞,                 (4) 
 
and we believe that M1ξ

∗ , M2ξ
∗  «M3ξ

∗ ; M1z
∗ , M2z

∗  «M3z
∗ ; M1x

∗ , M2x
∗  «M3x

∗ . 
 
In the future, we will consider the components of the disturbing moment 𝐌𝐌∗ 

of the electric motor, represented as sums of harmonic terms with frequencies that 
are multiples of the frequency of rotation of the stator magnetic field Ωс, and phases 
Ql, determined by the phase of the rotating magnetic field: 

 
𝐌𝐌∗ = ∑ 𝐌𝐌l

∗ cos(lΩсT + Ql)∞
l=1 ,           (5) 

 
Where, 𝐌𝐌l

∗ = −V𝐈𝐈𝐇𝐇∗ sin θ0; H∗, Ql - intensity amplitude and phase of the 
1st harmonic component; 𝐈𝐈 – permanent magnetization vector; V - volume of the 
active part of the rotor. 

Projections of the angular momentum vector Hξ
∗, Hx

∗ are connected as follows: 
 

 are connected as follows:

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

,                        (6)
‖

H1ξ
∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 - transformation matrix, which, when taking into account terms of the 
second order of smallness for 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 and 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 appears as follows:

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 
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where 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 - projections of the vector 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 
on the axis of dynamic symmetry of the rotor, 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

.
Using the theorem on the change in angular momentum, we write the equations 

of motion of the rotor in projections on the axes of the trihedron

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

:

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

.                             (7)

The reason for the occurrence of moments 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

 on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor.

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form:

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

     (8)

After substituting (3)-(6) into (8), we bring the equations of motion of the 
rotor (8) to a dimensionless form, having normalized the variables included in it:

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 

‖
H1ξ

∗

H2ξ
∗

H3ξ
∗

‖ = Eξx ‖
H1x

∗

H2x
∗

H3x
∗

‖,                    (6) 

 
𝐸𝐸𝜉𝜉𝜉𝜉 - transformation matrix, which, when taking into account terms of the 

second order of smallness for𝛤𝛤1, 𝛤̇𝛤1, 𝛤𝛤2, 𝛤̇𝛤2, 𝜀𝜀 and 𝜃𝜃, 𝜃̇𝜃 appears as follows: 
 

‖
𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝜀𝜀) (𝜀𝜀 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2)

(𝛤𝛤1𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (−𝛤𝛤1𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝜀𝜀) (−𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1)
(−𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3) (𝛤𝛤2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤1𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀) (−𝛤𝛤2 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 −𝛤𝛤1𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 𝛤𝛤3 + 𝛤𝛤4)

‖ 

 
where 𝐻𝐻1𝑥𝑥

∗ = 𝐴𝐴𝛺𝛺1𝑥𝑥, 𝐻𝐻2𝑥𝑥
∗ = 𝐵𝐵𝛺𝛺2𝑥𝑥, 𝐻𝐻3𝑥𝑥

∗ = 𝐶𝐶𝛺𝛺3𝑥𝑥 - projections of the vector 𝑯𝑯∗  
on the axis of dynamic symmetry of the rotor, 𝛤𝛤4 = 1 − (𝜀𝜀2 + 𝛤𝛤1

2 + 𝛤𝛤2
2)/2. 

 
Using the theorem on the change in angular momentum, we write the 

equations of motion of the rotor in projections on the axes of the trihedron 𝑂𝑂𝑂𝑂1𝜉𝜉2𝜉𝜉3: 
 

𝐻̇𝐻𝑛𝑛𝑛𝑛
∗ = 𝑀𝑀𝑛𝑛𝑛𝑛

∗ , 𝑛𝑛 = 1,2,3.                                            (7) 
 
The reason for the occurrence of moments 𝑀𝑀𝑛𝑛𝑛𝑛

∗   on the right side of equation 
(7) is the “polar” disturbing moment of the electric motor. 

If we substitute the values of the projection of the angular velocity of the rotor 
on the axis of dynamic symmetry into the equations of motion, then in expanded 
form the system of equations of motion (7) has the form: 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2] + 𝐵𝐵[−𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 +

𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 + 𝛤𝛤2𝛤̇𝛤3]} = 𝑀𝑀1𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 − 𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/

2] + 𝐶𝐶[−𝜀𝜀𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤𝛤1𝛤̇𝛤3]} = 𝑀𝑀2𝜉𝜉, 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝐴𝐴[−𝛤̇𝛤1𝛤𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3] + 𝐵𝐵[𝜀𝜀𝛤𝛤2𝛤̇𝛤3 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 +

𝜀𝜀𝛤𝛤1𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝜀𝜀2𝛤̇𝛤3+𝛤𝛤2𝛤̇𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 + 𝛤𝛤1𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐2𝛤𝛤3 + 𝜀𝜀𝛤̇𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 − 𝛤̇𝛤1𝛤𝛤2𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3 −
𝛤̇𝛤1𝛤𝛤1𝑠𝑠𝑠𝑠𝑠𝑠2𝛤𝛤3/2 − 𝜀𝜀𝛤̇𝛤1𝑠𝑠𝑠𝑠𝑠𝑠𝛤𝛤3] + 𝐶𝐶[𝜀𝜀𝛤̇𝛤1 𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 − 𝜀𝜀𝛤̇𝛤2𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 +

𝛤̇𝛤1𝛤𝛤2 −𝜀𝜀𝜀𝜀2𝛤̇𝛤3𝑠𝑠𝑠𝑠𝑠𝑠 𝛤𝛤3 −𝜀𝜀𝜀𝜀1𝛤̇𝛤3𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤3 + 𝛤̇𝛤3 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛤𝛤2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀]} = 𝑀𝑀3𝜉𝜉 .             (8) 
 
After substituting (3)-(6) into (8), we bring the equations of motion of the 

rotor (8) to a dimensionless form, having normalized the variables included in it: 
 

𝛤𝛤1 = 𝛤𝛤∗𝛾𝛾1
∗, 𝛤𝛤2 = 𝛤𝛤∗𝛾𝛾2

∗, 𝜃𝜃 = 𝛤𝛤∗𝜃𝜃, 𝛺𝛺1𝑥𝑥 = 𝛺𝛺∗𝜔𝜔1𝑥𝑥,  𝛺𝛺2𝑥𝑥 = 𝛺𝛺∗𝜔𝜔2𝑥𝑥,  𝛺𝛺3𝑥𝑥 =
𝛺𝛺3∗𝜔𝜔3𝑥𝑥, 𝐴𝐴 = 𝐶𝐶∗𝑎𝑎, 𝐵𝐵 = 𝐶𝐶∗𝑏𝑏, 𝐶𝐶 = 𝐶𝐶∗𝑐𝑐, 𝐻𝐻1𝜉𝜉

∗ = 𝐻𝐻𝜉𝜉∗ℎ1𝜉𝜉, 𝐻𝐻2𝜉𝜉
∗ = 𝐻𝐻𝜉𝜉∗ℎ2𝜉𝜉, 𝐻𝐻3𝜉𝜉

∗ =
𝐻𝐻∗ℎ3𝜉𝜉, 𝑀𝑀𝑛𝑛𝑛𝑛 = 𝑀𝑀∗𝑚𝑚𝑛𝑛𝑛𝑛 (𝑛𝑛 = 1,2,3), 𝑇𝑇 = 𝑇𝑇∗𝑡𝑡, 𝑀𝑀3𝑥𝑥 = 𝑀𝑀∗𝑚𝑚3𝑥𝑥.                (9) 

 
.         (9)

The characteristic values of the variables will be chosen as followsThe characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

.                                             (10)

Results. The amplitudes of the angular variables 

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

, by virtue of the 
very purpose of the gyroscopic system, are values ​​of the order of a few fractions 
of a minute of arc. Therefore, we choose 

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

. We choose the characteristic 
values ​​of the remaining variables in such a way that their dimensionless values ​​
do not exceed values ​​of the order of unity.

Let us assume that the difference between the equatorial moments of inertia 
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of the rotor is small: a-b= εe, where e is a dimensionless value of the order of 
unity.

Taking into account the normalization of variables (9) and characteristic 
values ​​(10), we write equations (8) in the normalized form

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

.                           (11)
The solution of equations (11) containing the small parameter ε will be sought 

in the form of an expansion in powers of the small parameter:

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

.                            (12)

A finite number of expansions (12) on a limited time gives an asymptotic 
approximation for the solution of the original system.

In the normalized form, the perturbing moment vector is represented as:
	                              

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

.     (13)

In equation (11), we reduce the common factor ε and equating the terms at the 
zero degree of ε, we write the zero approximation equations

The characteristic values of the variables will be chosen as follows 
  𝑇𝑇∗ = 1

𝛺𝛺с
, 𝛺𝛺∗ = 𝛤𝛤∗𝛺𝛺с, 𝛺𝛺3∗ = 𝛺𝛺с, 𝐶𝐶∗ = 𝐶𝐶, 𝐻𝐻∗ = 𝐻𝐻∗ = 𝐶𝐶∗𝛺𝛺3∗, 𝐻𝐻𝜉𝜉∗ = 𝜀𝜀𝐻𝐻∗, 𝑀𝑀∗ =

𝐻𝐻∗ 𝛺𝛺∗.                                   (10) 
 
Results. The amplitudes of the angular variables 𝛤𝛤1, 𝛤𝛤2, 𝜃𝜃, by virtue of the very 

purpose of the gyroscopic system, are values of the order of a few fractions of a 
minute of arc. Therefore, we choose 𝛤𝛤∗ = 𝜀𝜀. We choose the characteristic values of 
the remaining variables in such a way that their dimensionless values do not exceed 
values of the order of unity. 

Let us assume that the difference between the equatorial moments of inertia 
of the rotor is small: a-b= εe, where e is a dimensionless value of the order of unity. 

Taking into account the normalization of variables (9) and characteristic 
values (10), we write equations (8) in the normalized form 

 
𝑑𝑑/𝑑𝑑𝑑𝑑{𝑎𝑎𝛾̇𝛾1 − 𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 0.5𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑐𝑐 −

𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾𝛾2 + 𝑐𝑐𝑐𝑐𝛾𝛾2𝛾̇𝛾3 − (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚1𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{1/2𝜀𝜀𝜀𝜀𝛾̇𝛾1𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑎𝑎𝛾̇𝛾2 − 𝜀𝜀𝜀𝜀𝛾̇𝛾2𝑐𝑐𝑐𝑐𝑐𝑐2(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾3(𝑎𝑎 −
𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝛾𝛾1 − 𝑐𝑐𝑐𝑐𝛾𝛾1𝛾̇𝛾3 + (𝑎𝑎 − 𝜀𝜀𝜀𝜀)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3)} =
𝑚𝑚2𝜉𝜉 , 

𝑑𝑑/𝑑𝑑𝑑𝑑{𝜀𝜀𝛾̇𝛾1(𝑐𝑐 − 𝑎𝑎)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾̇𝛾2(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝑐𝑐𝛾̇𝛾3 +
𝜀𝜀𝛾𝛾1(𝑎𝑎 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) + 𝜀𝜀𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝜀𝜀𝛾𝛾3) − 𝑐𝑐𝑐𝑐𝛾𝛾1

2 − 𝑐𝑐𝑐𝑐𝛾𝛾2
2 −

𝛾̇𝛾1𝛾𝛾2(𝑎𝑎 − 𝑐𝑐)𝜀𝜀 + 𝑎𝑎𝑎𝑎𝛾𝛾1𝛾̇𝛾2} = 𝑚𝑚3𝜉𝜉 .                                                            
(11) 

The solution of equations (11) containing the small parameter ε will be sought 
in the form of an expansion in powers of the small parameter: 

 
𝛾𝛾𝑛𝑛

∗ = 𝛾𝛾𝑛𝑛
(0) + 𝜀𝜀𝛾𝛾𝑛𝑛

(0) + ⋯ , 𝑛𝑛 = 1,2,3.                       (12) 
 
A finite number of expansions (12) on a limited time gives an asymptotic 

approximation for the solution of the original system. 
In the normalized form, the perturbing moment vector is represented as: 
                               

𝑚𝑚1𝜉𝜉
0 , 𝑚𝑚2𝜉𝜉

0  «𝑚𝑚3𝜉𝜉
0 ; 𝑚𝑚1𝑧𝑧

0 , 𝑚𝑚2𝑧𝑧
0  «𝑚𝑚3𝑧𝑧

0 ; 𝑚𝑚1𝑥𝑥
0 , 𝑚𝑚2𝑥𝑥

0  «𝑚𝑚3𝑥𝑥
0 .                   (13) 

 
In equation (11), we reduce the common factor ε and equating the terms at the 

zero degree of ε, we write the zero approximation equations 
 

𝑎𝑎𝛾̈𝛾1
(0) + 𝛾̇𝛾2

(0) = (𝑎𝑎 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                      (14) 
 

𝑎𝑎𝛾̈𝛾2
(0) + 𝛾̇𝛾1

(0) = (𝑎𝑎 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 

                          (14)

 
and equating in (11) the terms at the first power of ε, we obtain the equations 

of the first approximation 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-
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and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

                 (15)

where, 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

, since the projecti
ons of the moment 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

 on axes 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

 are equal to zero, and with the 
projection of the moment 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

 on axes 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

, coefficients in front of 
them vanish.

The solution of the equations of motion of the zero approximation (14) have 
the form:

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

                                             (16)

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

.

In the first approximation equation (1.15), the linear and quadratic terms of the 
variables 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

 are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

.
Let us calculate the explicit expressions 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

 in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into 
account only the first harmonics of the perturbation 

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

.
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope:

and equating in (11) the terms at the first power of ε, we obtain the equations 
of the first approximation 

 
𝑎𝑎𝛾̈𝛾1

(1) + 𝛾̇𝛾2
(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾2

(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡] − (𝑎𝑎 −

1)(𝜃̇𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝜃𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) + 𝛾𝛾2
(0)𝜃̇𝜃(0)} + 𝑚𝑚1𝜉𝜉

(1), 

𝑎𝑎𝛾̈𝛾2
(1) − 𝛾̇𝛾1

(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {𝑒𝑒 [0.5𝛾̇𝛾1
(0)𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 − 𝛾̇𝛾2

(0)𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡] + (𝑎𝑎 −
1)(𝜃̇𝜃(0)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃(0)𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡) − 𝛾𝛾1

(0)𝜃̇𝜃(0)} + 𝑚𝑚2𝜉𝜉
(1), 

𝜃̈𝜃(1) = −𝑑𝑑/𝑑𝑑𝑑𝑑 {(𝑎𝑎 − 1) [(𝛾𝛾2
(0) − 𝛾̇𝛾1

(0)) 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + (𝛾̇𝛾2
(0) + 𝛾𝛾1

(0)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 −

𝛾̇𝛾1
(0)𝛾𝛾2

(0)] − [(𝛾𝛾1
(0))

2
+ (𝛾𝛾2

(0))
2

] + 𝑎𝑎𝛾𝛾1
(0)𝛾̇𝛾2

(0)} + 𝑚𝑚3𝜉𝜉
(1),              (15) 

 
where, 𝑚𝑚1𝜉𝜉

(1) = 𝑚𝑚3𝑧𝑧
(0)𝛾𝛾2

(0), 𝑚𝑚2𝜉𝜉
(1) = −𝑚𝑚3𝑧𝑧

(0)𝛾𝛾1
(0), 𝑚𝑚3𝜉𝜉

(1) = 𝑚𝑚3
(1), since the 

projections of the moment 𝑚𝑚3𝜉𝜉𝒆𝒆3𝜉𝜉  on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2 are equal to zero, and with the 
projection of the moment 𝑚𝑚3𝑥𝑥𝒆𝒆3𝑥𝑥 on axes 𝑂𝑂𝑂𝑂1, 𝑂𝑂𝑂𝑂2, coefficients in front of them 
vanish. 

The solution of the equations of motion of the zero approximation (14) have 
the form: 

𝛾𝛾1
(0) = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,                (16) 

 
𝛾𝛾2

(0) = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
    

𝜃𝜃(0) = ∑ (𝑚𝑚𝑙𝑙/𝑙𝑙2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)∞
𝑙𝑙=1 . 

 
In the first approximation equation (1.15), the linear and quadratic terms of 

the variables 𝛾𝛾1
(0), 𝛾𝛾2

(0), 𝜃𝜃(0) are already known. The constant components of these 
terms determine a particular solution of system (11) of the form 𝛾̇𝛾1

(1), 𝛾̇𝛾2
(1). 

Let us calculate the explicit expressions 𝛾̇𝛾1
(1)𝑎𝑎𝑎𝑎𝑎𝑎  𝛾̇𝛾2

(1) in terms of the 
gyroscope and perturbation parameters. In addition, below we will take into account 
only the first harmonics of the perturbation 𝑚𝑚3

(0). 
Substituting (16) into (15) and averaging the expressions over time t, we 

determine the departure of the ball gyroscope: 
 

〈𝛾̇𝛾1
(1)〉 = −(𝑚𝑚1𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄1)/2, 〈𝛾̇𝛾2

(1)〉 = (𝑚𝑚1𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄1)/2       (17) 
 
The drift occurs when the dynamic unbalance of the rotor interacts with the 

first harmonic component of the "polar" magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006). 

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-

                 (17)

The drift occurs when the dynamic unbalance of the rotor interacts with the 
first harmonic component of the “polar” magnetic moment. The drift does not 
depend on the small dynamic asymmetry of the rotor (Benecke, et al, 2006).

It was noted in (Caspary, et al, 2013; Mine Health and Safety Act No 29 of 
1996 Government Gazette, 2011) that the drifts of a gyroscope with a hysteresis-
type gyro-motor change from start to start or during short-term power failures. 
Assumptions are made about the connection of this phenomenon with a change 
in the phase angle of the rotating magnetic field of the stator relative to the rotor.

The drift can be explained by the quadratic interaction of two types of angular 
vibrations of the rotor, arising from the imperfection of the support nodes and the 
electric motor (Williams, H. S., 2015).
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The constant components of the gyroscope escape velocities depend 
harmonically on the phase angle of the rotating magnetic field of the stator 
relative to the rotor, which is consistent with the results of works [5, 6, 7], in 
which other types of devices were considered.

Passing in (17) to the non-normalized form, we obtain

type gyro-motor change from start to start or during short-term power failures. 
Assumptions are made about the connection of this phenomenon with a change in 
the phase angle of the rotating magnetic field of the stator relative to the rotor. 

The drift can be explained by the quadratic interaction of two types of angular 
vibrations of the rotor, arising from the imperfection of the support nodes and the 
electric motor (Williams, H. S., 2015). 

The constant components of the gyroscope escape velocities depend 
harmonically on the phase angle of the rotating magnetic field of the stator relative 
to the rotor, which is consistent with the results of works [5, 6, 7], in which other 
types of devices were considered. 

Passing in (17) to the non-normalized form, we obtain 
〈𝛤̇𝛤1〉 = − ( 𝑀𝑀1𝑧𝑧

(2𝐻𝐻)) 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 = −7.110−4𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 (с−1), 〈𝛤̇𝛤2〉 =
  7.110−4𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 (с−1)                                                                   (18) 

 
When estimating the numerical values of the drift of a gyroscope with a central 

spherical pore, the following characteristics were used (Young, E. M., 2009): 
 

𝑀𝑀1𝑧𝑧 = 9.8110−5 (кгм2с−2), 𝐻𝐻 = 0.069 (кгм2с−1).            (19) 
 
Discussion. In the general case, the torque depends both on the angle of 

rotation of the rotor relative to the magnetic field of the stator, and on the angular 
velocity of this rotation. 

Along with the disturbing moment (5), we take into account the synchronous 
𝐾𝐾𝑐𝑐𝜃𝜃 and asynchronous 𝑁𝑁0𝜃̇𝜃 components of the moment of electromagnetic forces 
acting along the rotor axis, where 𝐾𝐾𝑐𝑐 is the steepness of the torque characteristic of 
the synchronous drive, 𝑁𝑁0 is the damping coefficient. Having additionally 
normalized the values: 𝑁𝑁0 = 𝑁𝑁∗ 𝑛𝑛0, 𝐾𝐾𝑐𝑐 = 𝐾𝐾∗𝑘𝑘𝑐𝑐, we choose the characteristic values 
of these variables as follows: 𝐾𝐾∗ = 𝐶𝐶∗𝛺𝛺с

2, 𝑁𝑁∗ = 𝜀𝜀1𝐶𝐶∗𝛺𝛺с, where 𝜀𝜀1 = 𝜀𝜀1/2. The third 
equation of system (15) can now be written in a dimensionless form as follows 

 
𝜃𝜃(0) = 𝑚𝑚3

0, где 𝑚𝑚3
0 = ∑ 𝑚𝑚𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙) −∞

𝑙𝑙=1 𝑛𝑛0𝜃̇𝜃(0) − 𝑘𝑘𝑐𝑐𝜃𝜃(0),  (20) 
 
where 𝑘𝑘𝑐𝑐 - natural frequency of small oscillations of the rotor relative to the 

magnetic field of the stator. 
We give the solution of equations (15) in the form: 
 
𝜃𝜃(0) = 𝑑𝑑𝑒𝑒0

−(𝑛𝑛/2)𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 (√𝑘𝑘𝑐𝑐 − 𝑛𝑛0
2𝑡𝑡/4 + ) + ∑ (𝑘𝑘𝑐𝑐 − 𝑙𝑙2)∞

𝑙𝑙=1 𝑚𝑚𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)/
[(𝑘𝑘𝑐𝑐 − 𝑙𝑙2) + 𝑛𝑛0

2𝑙𝑙2] + ∑ 𝑛𝑛0𝑙𝑙𝑚𝑚𝑙𝑙
∞
𝑙𝑙=1 𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)/[(𝑘𝑘𝑐𝑐 − 𝑙𝑙2) + 𝑛𝑛0

2𝑙𝑙2],  (21) 
 
Where, 𝑑𝑑0, 𝑑𝑑1 – constants of integration determined from the initial 

conditions. At 𝑙𝑙 = 1, substituting (21) into (15) and averaging over 𝑡𝑡, we determine 
from the first two equations (15) the constant components of the drift: 

 

 

type gyro-motor change from start to start or during short-term power failures. 
Assumptions are made about the connection of this phenomenon with a change in 
the phase angle of the rotating magnetic field of the stator relative to the rotor. 

The drift can be explained by the quadratic interaction of two types of angular 
vibrations of the rotor, arising from the imperfection of the support nodes and the 
electric motor (Williams, H. S., 2015). 

The constant components of the gyroscope escape velocities depend 
harmonically on the phase angle of the rotating magnetic field of the stator relative 
to the rotor, which is consistent with the results of works [5, 6, 7], in which other 
types of devices were considered. 

Passing in (17) to the non-normalized form, we obtain 
〈𝛤̇𝛤1〉 = − ( 𝑀𝑀1𝑧𝑧

(2𝐻𝐻)) 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 = −7.110−4𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 (с−1), 〈𝛤̇𝛤2〉 =
  7.110−4𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑄𝑄1 (с−1)                                                                   (18) 

 
When estimating the numerical values of the drift of a gyroscope with a central 

spherical pore, the following characteristics were used (Young, E. M., 2009): 
 

𝑀𝑀1𝑧𝑧 = 9.8110−5 (кгм2с−2), 𝐻𝐻 = 0.069 (кгм2с−1).            (19) 
 
Discussion. In the general case, the torque depends both on the angle of 

rotation of the rotor relative to the magnetic field of the stator, and on the angular 
velocity of this rotation. 

Along with the disturbing moment (5), we take into account the synchronous 
𝐾𝐾𝑐𝑐𝜃𝜃 and asynchronous 𝑁𝑁0𝜃̇𝜃 components of the moment of electromagnetic forces 
acting along the rotor axis, where 𝐾𝐾𝑐𝑐 is the steepness of the torque characteristic of 
the synchronous drive, 𝑁𝑁0 is the damping coefficient. Having additionally 
normalized the values: 𝑁𝑁0 = 𝑁𝑁∗ 𝑛𝑛0, 𝐾𝐾𝑐𝑐 = 𝐾𝐾∗𝑘𝑘𝑐𝑐, we choose the characteristic values 
of these variables as follows: 𝐾𝐾∗ = 𝐶𝐶∗𝛺𝛺с

2, 𝑁𝑁∗ = 𝜀𝜀1𝐶𝐶∗𝛺𝛺с, where 𝜀𝜀1 = 𝜀𝜀1/2. The third 
equation of system (15) can now be written in a dimensionless form as follows 

 
𝜃𝜃(0) = 𝑚𝑚3

0, где 𝑚𝑚3
0 = ∑ 𝑚𝑚𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙) −∞

𝑙𝑙=1 𝑛𝑛0𝜃̇𝜃(0) − 𝑘𝑘𝑐𝑐𝜃𝜃(0),  (20) 
 
where 𝑘𝑘𝑐𝑐 - natural frequency of small oscillations of the rotor relative to the 

magnetic field of the stator. 
We give the solution of equations (15) in the form: 
 
𝜃𝜃(0) = 𝑑𝑑𝑒𝑒0

−(𝑛𝑛/2)𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 (√𝑘𝑘𝑐𝑐 − 𝑛𝑛0
2𝑡𝑡/4 + ) + ∑ (𝑘𝑘𝑐𝑐 − 𝑙𝑙2)∞

𝑙𝑙=1 𝑚𝑚𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)/
[(𝑘𝑘𝑐𝑐 − 𝑙𝑙2) + 𝑛𝑛0

2𝑙𝑙2] + ∑ 𝑛𝑛0𝑙𝑙𝑚𝑚𝑙𝑙
∞
𝑙𝑙=1 𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑙𝑙)/[(𝑘𝑘𝑐𝑐 − 𝑙𝑙2) + 𝑛𝑛0

2𝑙𝑙2],  (21) 
 
Where, 𝑑𝑑0, 𝑑𝑑1 – constants of integration determined from the initial 

conditions. At 𝑙𝑙 = 1, substituting (21) into (15) and averaging over 𝑡𝑡, we determine 
from the first two equations (15) the constant components of the drift: 

 

                  (18)

When estimating the numerical values of the drift of a gyroscope with a central 
spherical pore, the following characteristics were used (Young, E. M., 2009):

type gyro-motor change from start to start or during short-term power failures. 
Assumptions are made about the connection of this phenomenon with a change in 
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2;  𝐼𝐼2 = 𝐼𝐼3/𝜀𝜀1; 𝐼𝐼3 =
𝑁𝑁0/ 𝐻𝐻; 𝜆𝜆2 = 𝐾𝐾𝑐𝑐/𝐶𝐶 - natural frequency of small oscillations of the rotor relative to 
the magnetic field of the stator in dimensional form. 

 
The steepness of the torque characteristic of a synchronous drive 𝐾𝐾𝑐𝑐 is defined 

as 𝐾𝐾𝑐𝑐 = 𝐼𝐼 𝐻𝐻0
∞𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(0). Here 𝐻𝐻0

∞ - constant term of the stator magnetic field strength, 
𝜃𝜃(0) - initial timing angle. 

The values 𝑁𝑁 and 𝜆𝜆 vary from10−8 to 10−3 (Nms) [6] and 0.05…0.1 [7] or 
10…20 (hertz) [6], respectively. Taking into account (18) and taking Ωс = 5.0103 
(с−1), λ2 = 1.6104 (с−2) (20hz), N0/ H = 1.410−2, we determine the drift (23) 

 
〈Γ̇1〉 = −10−4(0.02εsinQ1 + εcosQ1) (с−1), 

 
〈Γ̇2〉 = 10−6(0.3εsinQ1 + 2εcosQ1) (с−1).                        (24) 

 
The expressions for the drift angular velocities (18) and (24) of a spherical 

gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
parameter ε, which determines the angle between the axis of proper rotation and the 
dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
elements. The value of the constant angle ε in modern gyroscopic devices is small. 
It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 

〈Γ̇2〉 = 7.110−9sinQ1 (с−1).                                 (25) 
 

In (Golovanov, 2004), the angular velocity of the gyroscope drift in a gimbal 
suspension with a dynamically unbalanced rotor with a fixed base was obtained. The 
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It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
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The values 𝑁𝑁 and 𝜆𝜆 vary from10−8 to 10−3 (Nms) [6] and 0.05…0.1 [7] or 
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gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
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dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
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It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
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The values 𝑁𝑁 and 𝜆𝜆 vary from10−8 to 10−3 (Nms) [6] and 0.05…0.1 [7] or 
10…20 (hertz) [6], respectively. Taking into account (18) and taking Ωс = 5.0103 
(с−1), λ2 = 1.6104 (с−2) (20hz), N0/ H = 1.410−2, we determine the drift (23) 

 
〈Γ̇1〉 = −10−4(0.02εsinQ1 + εcosQ1) (с−1), 

 
〈Γ̇2〉 = 10−6(0.3εsinQ1 + 2εcosQ1) (с−1).                        (24) 

 
The expressions for the drift angular velocities (18) and (24) of a spherical 

gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
parameter ε, which determines the angle between the axis of proper rotation and the 
dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
elements. The value of the constant angle ε in modern gyroscopic devices is small. 
It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 
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as 𝐾𝐾𝑐𝑐 = 𝐼𝐼 𝐻𝐻0
∞𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(0). Here 𝐻𝐻0

∞ - constant term of the stator magnetic field strength, 
𝜃𝜃(0) - initial timing angle. 

The values 𝑁𝑁 and 𝜆𝜆 vary from10−8 to 10−3 (Nms) [6] and 0.05…0.1 [7] or 
10…20 (hertz) [6], respectively. Taking into account (18) and taking Ωс = 5.0103 
(с−1), λ2 = 1.6104 (с−2) (20hz), N0/ H = 1.410−2, we determine the drift (23) 

 
〈Γ̇1〉 = −10−4(0.02εsinQ1 + εcosQ1) (с−1), 

 
〈Γ̇2〉 = 10−6(0.3εsinQ1 + 2εcosQ1) (с−1).                        (24) 

 
The expressions for the drift angular velocities (18) and (24) of a spherical 

gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
parameter ε, which determines the angle between the axis of proper rotation and the 
dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
elements. The value of the constant angle ε in modern gyroscopic devices is small. 
It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 
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suspension with a dynamically unbalanced rotor with a fixed base was obtained. The 
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The values 𝑁𝑁 and 𝜆𝜆 vary from10−8 to 10−3 (Nms) [6] and 0.05…0.1 [7] or 
10…20 (hertz) [6], respectively. Taking into account (18) and taking Ωс = 5.0103 
(с−1), λ2 = 1.6104 (с−2) (20hz), N0/ H = 1.410−2, we determine the drift (23) 
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〈Γ̇2〉 = 10−6(0.3εsinQ1 + 2εcosQ1) (с−1).                        (24) 
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gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
parameter ε, which determines the angle between the axis of proper rotation and the 
dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
elements. The value of the constant angle ε in modern gyroscopic devices is small. 
It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 
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It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 
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In (Golovanov, 2004), the angular velocity of the gyroscope drift in a gimbal 
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2;  𝐼𝐼2 = 𝐼𝐼3/𝜀𝜀1; 𝐼𝐼3 =
𝑁𝑁0/ 𝐻𝐻; 𝜆𝜆2 = 𝐾𝐾𝑐𝑐/𝐶𝐶 - natural frequency of small oscillations of the rotor relative to 
the magnetic field of the stator in dimensional form. 

 
The steepness of the torque characteristic of a synchronous drive 𝐾𝐾𝑐𝑐 is defined 

as 𝐾𝐾𝑐𝑐 = 𝐼𝐼 𝐻𝐻0
∞𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(0). Here 𝐻𝐻0

∞ - constant term of the stator magnetic field strength, 
𝜃𝜃(0) - initial timing angle. 
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〈Γ̇1〉 = −10−4(0.02εsinQ1 + εcosQ1) (с−1), 

 
〈Γ̇2〉 = 10−6(0.3εsinQ1 + 2εcosQ1) (с−1).                        (24) 

 
The expressions for the drift angular velocities (18) and (24) of a spherical 

gyroscope with a dynamically unbalanced rotor contain a dimensionless small 
parameter ε, which determines the angle between the axis of proper rotation and the 
dynamic symmetry of the rotor. These two axes do not coincide due to imperfections 
in the manufacturing technology of the rotor and the assembly of the gyroscope 
elements. The value of the constant angle ε in modern gyroscopic devices is small. 
It is about 10−410−5. Substituting the value ε = 10−5 into the expression for the 
departure (18) of the ball gyroscope, which depends on the first harmonic component 
of the disturbing moment of the electric motor and the phase angle Q1 of the first 
harmonic of the disturbing moment, we obtain: 

 
〈Γ̇1〉 = −7.110−9cosQ1 (с−1), 

〈Γ̇2〉 = 7.110−9sinQ1 (с−1).                                 (25) 
 

In (Golovanov, 2004), the angular velocity of the gyroscope drift in a gimbal 
suspension with a dynamically unbalanced rotor with a fixed base was obtained. The 

.                   (25)
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In (Golovanov, 2004), the angular velocity of the gyroscope drift in a gimbal 
suspension with a dynamically unbalanced rotor with a fixed base was obtained. 
The moments relative to the axes of the outer and inner rings and the rotor are 
considered to be equal to zero. At values of angular velocity, unbalance, polar 
and equatorial moments of inertia of the rotor, respectively, equal to 3045.8 (c-
1), 10-5,  0.324x10-3(kgm2),  0.196x10-3(kgm2), The drift is -10-6 (c-1).

In the same place, the angular velocity of the gyroscope drift was obtained 
without taking into account the influence of the perturbing moment of the electric 
motor.

If in the expression of the angular velocity of drift of such a gyroscope, obtained 
in (Tulegulov, 2021), with a dynamically unbalanced rotor with a fixed base, the 
influence of the disturbing moment of the electric motor is not taken into account, 
then the drift expression exactly coincides with the drift obtained in (Sammarco, 
2012) and the drift is 

moments relative to the axes of the outer and inner rings and the rotor are considered 
to be equal to zero. At values of angular velocity, unbalance, polar and equatorial 
moments of inertia of the rotor, respectively, equal to 3045.8 (с−1), 10−5, 
0.32410−3 (kgm2), 0.19610−3 (kgm2), The drift is −10−6 (с−1). 

In the same place, the angular velocity of the gyroscope drift was obtained 
without taking into account the influence of the perturbing moment of the electric 
motor. 

If in the expression of the angular velocity of drift of such a gyroscope, 
obtained in (Tulegulov, 2021), with a dynamically unbalanced rotor with a fixed 
base, the influence of the disturbing moment of the electric motor is not taken into 
account, then the drift expression exactly coincides with the drift obtained in 
(Sammarco, 2012) and the drift is −810−9 (с−1). In this case, the angular velocity, 
unbalance, polar and equatorial moments of inertia have, respectively, the following 
values 2500 (с−1), 10−5, 0.0392410−3 (kgm2), 0.0294310−3 (kgm2). 

Conclusions: The drift obtained in (Tulegulov, 2021) for an integrating float 
gyroscope with an unbalanced rotor depends on the first harmonic component of the 
disturbing moment of the electric motor and the phase angle Q1 of the first harmonic 
of this moment and is 510−11sin(Q1 + Ψ) (с−1). Here Ψ depends on the 
coefficient of viscous friction. 

Dynamic reactions due to errors in the supports are detected during the 
assembly process and are partially eliminated by dynamic balancing. 

Abroad, there are models of balancing machines specially adapted for 
balancing small rotors and equipped with installations for calibrated drilling. 

In a Dekker type 211 semiautomatic balancing machine (USA), in which the 
drilling head is mounted directly based on the balancing machine, it is possible to 
dynamically balance the rotors of gyro motors with a mass of 160–600 (g) with an 
accuracy of 0.3 (μm) in terms of the displacement of the center of mass (Hendrik, 
2016).  

In this section, equations of motion are compiled in the form of equations of 
kinetic moments for the rotor in projections on the axis of a fixed trihedron 
connected to the gyroscope stator. The moment created by the hysteresis type 
electric motor along its own axis is not constant, it depends on the dynamic 
unbalance of the rotor and the imperfection of the motor supply. For the ball 
gyroscope, it is shown that the interaction of the rotor imbalance and the first 
harmonic component of the disturbing motor torque is the cause of the drift, which 
depends on the phase angle of the rotating magnetic field of the electric motor. The 
perturbation frequency is a multiple of the rotor rotation frequency. The influence of 
the synchronous and asynchronous components of the moment of electromagnetic 
forces on the dynamics of the gyroscope is also considered. It can be seen from the 
drift expressions that the drift value averaged over the phase angle θ of the rotating 
magnetic field of the stator can turn to zero, which coincides with the 
recommendations proposed by previous authors. Quantitative estimations of ball 
gyroscope errors are given. 
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